= NAVAL POSTGRADUATE SCHOOL @

|
I
l

Monterey, California

AD-A286 112
L

THESIS f{§7f"?uﬂ
3434
WWWWIfflf’mmﬂll»fﬂlf’ff", AP " - N

AN INVESTIGATION INTO THE LONG-TERM
IMPACT OF THE CALIBRATION OF SOFTWARE
ESTIMATION MODELS USING RAW
HISTORICAL DATA

by
Daryl Allen Shadle

September, 1994

Thesis Advisor Tarek Abdel-Hamid

Approved for public release; distribution is unlimited.

94 1110 o014




REPORT DOCUMENTATION PAGE

FonnApprv OMB No. 0704

Public reporting butden for this collection of information 1s estimated to average | hour per response. including the ume tor reviewing
pnstruction, searching existing data suurces, gathenng and maintamng the data needed. and completing and reviewing the coliection of
nformation. Send comments regarding this burden estimate or any other aspect ot this collection of information. including suggestions
'or reducing this burden. to Washington headquarters Services. Dwrectorate for information Operations and Reports, 1 21 ¢ Jefferson Davis

ighway. Suite 1204, Arhington. VA 222024102, and to the Office of Management and Budget. Paperwork Reduction Project
0704-0188) Washington DC 20501

1

AGENCY USE ONLY (leurve bluak: 2 REPORT DATE

September 1994

T REPORT TYPE AND DATES COVERED
Master's Thesis

AN INVESTIGATION INTO THE LONG TERM IMPACT OF THE C A IBRATION OF

TITLE AND SUBTITLF ¢

SOFTWARF ESTIMATION MODEL S U SING RAW HISTORICAL DATA U

AUTHOR(S) Shadie. Darvi A

FESNDING NEMBERS

PERFORMING ORGANIZATION NAME(S) AND ADDRESMES)
Naval Postgraduste School
Monterey. ( A 91041 5000

W PERFORMING ORGANIZATHOAN
REPORT NUMBER

SPONSORING MONITORING AGENCY NAMES) AND ADDRESSES)

H SPONSORING MONTORING
AGENM Y REPORT NUMBER

SUPPLEMENTARY NOTES

The views expressed in this thesss are those of the authos and do not reflect the otficial polics of pusition of the Department of

Detense ur the L § Government

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release. distribution uniimited A

176 DISTRIBL THON ( ODE

(R}

. ABSTRACT imaxtmum 200 words)

The benefit of software cost estimation 1s umversalh recogmzed as one of the cornerstones of effectin e sofiware progect management and
control Despue the ady ances of computer-based cstimstion iools. they accwacy remains largeh insdequate and  they ulilits among
software development practtioners is lumted  Consoquenth . the aptimal estimation of software cost remamns an clusive goal of most

project mansgers
organization's databasc of hustoncal project results

Central to Uws 1ssuc 15 the nature of the data on completed software progects that arc incorparated o the
This miormation forms the basis for both futwre progect estimation and

ex-post-facto assessment of csumation models Actual prosect results arc tvpscalhy the data of chowee for both the calibration and
cvaluation processes. despiic the (act that these raw yvalues disregard proyect mefficicncies such as tutial size underestmation  Thus
thesis chsllenges the notion that mstoncal prosect results represent the preferred and most relisbie benchmarks for future cstrmation
purposes  Computer-basod simulation 1s used (o test 3 proposed strategy which capitalizes on an organuzation's lcarmeng cypenences bh
ncutralizing the cost cxcess caused by the invual undersinng. and that derves a postenor set of aormalized effont and schedule
cstimstion benchmarks Anahsis of the results indicases thel normahization of the das ieads 10 signsficantlhs improsed progect
productin ity . morc optimal cost estimates and pros sdes the organization with increased potential for future cost say ings

14

SUBJECT TERMS

Software Fstimation. Software Des clopment ( ahbration

1< NUMBER OF PAGES
140

e PRICE C ODF

'-v

SECULRITY s
CLASSHHICATION O
REPORT

SECURITY 19
CLASSIRIC ATHON OF THIS
PAGH

SECURITY
CLASSIFICATION OF
ARSTRALT

Unclasssfied

t nlassified U nlassitied
R _

Jo LIMITATION OF
ABSTRAC!
It

NSN TR0 0) RO S0

Standard Form T8 Ren

N L







.pproved for public release; distribution is unlimited.

AN INVESTIGATION INTO THE LONG-TERM IMPACT OF THE
CALIBRATION OF SOFTWARE ESTIMATION MODELS USING RAW
HISTORICAL DATA

by

Daryl Alien Shadle
Lieutenant Cor~ .«er, United States Navy
BS.,Penns . . -’ate University, 1970

Submitted in partiai fislfillment
of the requirements fc. ihe degrec of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Author: dMAAUM M‘u\./

Daryl Allen Shadle

Approved by: | Ew

Tarek Abdel-Hamid, Thesis Advisor

jWQi

7& Assocnate Adwsor
Accerion tor

David R. Whipple, Chairman NTIS  CRA&L

Department of Systems Management Dl T bj
Jootfo o

i L Dt ;

DIT S R |




v




ABSTRACT

The benefit of software cost estimation is universally recognized as one of the cor-
nerstones of effective software project management and control. Despite the advances of
computer-based estimation tools, their accuracy remains largelv inadequate, and their
utility among software development practitioners is limited. Consequently, the optimal
estimation of software cost remains an elusive goal of most project managers. “entral to
this issue 1s the nature of the data on completed software projects that are incorporated
into the organization's database of historical project resuits. This information forms the
basis for both future project estimation and ex-post-facto assessment of estimation mod-
els. Actual project results are typically the data of choice for both the calibration and
evaluation processes, despite the fact that these raw values disregard project inefficien-
ctes such as initial size underestimation. This thesis challenges the notion that historical
project results represent the preferred and most reliable benchmarks for future estimation
purposes. Computer-based simulation is used to test a proposed strategy which capital-
1zes on an organization's learning experiences by neutralizing the cost excess caused by
the imtial undersizing, and that denves a posterior set of normaulized effort and schedule
estimation benchmarks. Analvsts of the results indicates that normalization of the data
leads to sigmificantly improved project productivity. more optimal cost estimates. and

provides the organization with increased potential for future cost savings
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I. INTRODUCTION

A. BACKGROUND

The benefit of reliable software cost estimation is recognized as one of th: corner-
stones of effective software project management and control (Boehm, 1981, p.30). Nev-
ertheless, accurate estimation of software development costs remains an elusive goal of
most project managers, despite the proliferation of software engineering economic analy-
sis techmques and the availability of computer-based software project management tools
(Abdel-Hamid. 1990, p.71).

Software development has traditionally been viewed as a discrete set of software de-
velopment hie cvcle (SDLC) phases, when in fact, research findings point to a dynamic
environment characterized by continuous changes over time (Goddard Space Flight Cen-
ter. 1990) C(Consequently, problems inherent with the estimation process itself, normally
positioned at the beginning of the SDLC, have generally limited the utility of estimation
tools basced on this traditional view of software development.

Without the benefit of full knowledge of a project’s ultimate scope and definition at
the ume of initial cost estimation, an estimation modei must possess the capability to re-
spond to influencing factors which unfold as the project progresses through the SDLC.
Abdel-Hamid states that . _estimation should be a continuous process enhanced through
constant updates of feedback data collected from project monitoring and control activi-

ties..." He argues that continuous estimation models must support the full range of




estimation activities regularly encountered in the SDLC, adaptive (accommodate new or-
ganizational realities), corrective (correct initial faulty assumptions) and perfective (post-
mortems to perfect project statistics). In so doing, it 1s imperative that the model also
possess the capabitity to capture management-system dynamics -- project managers' reac-
tions to real-world events as they unfold. (Abdel-Hamid, 1993. pp. 20-21)

Despite the improvements realized with the introduction of genuine continuous esti-
mation moacts, their accuracy remains largely inadequate. Central to this issue 1s the na-
ture of the data on completed software projects that are incorporated into the
organization's database of historical project results. This archived information subse-
quently forms the basis for both future project estimation and ex-post-facto evaluation of
software cost estimation models. Quite simply, this data is used to produce the organiza-
tion's "best guess” of what a project of similar size and scope should require, in terms of
development effort and schedule, if encountered in the future. In addition, it is these data
values upon which estimation tool calibration, or fine-tuning to produce more accurate
estimates which reflect the organization's unique software development environment, 1s
based.

Raw project values, which represent actual results, are the conventional "data of
choice"” for both the estimation and calibration processes. While raw data, indeed, reflect
actual results, they may certainly not reflect oprimum results, particularly in the case of a
problematic project. Inefficiencies such as initial size underestimation, piague many, if

not all software development projects, and are manifested in varying degrees of cost
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overruns and schedule slippages. As such, direct incorporation of raw values into the his-
torical database tends to discount the impact of these inefficiencies on preject results. In-
stead, it merely archives this flawed information for future (mis)application, and
perpetuates the cycle of inefficiency and imprecise estimation.

In response, Abdel-Hamid has proposed a strategy which "...capitalizes on an organi-
zation's leamning experiences, by wringing out the cost excess caused by the initial under-
sizing and that derives a posterior set of normalized cost and schedule estimation
benchmarks.” (Abdel-Hamid, 1993, p. 28) These normalized values are representative
of a perfectly-sized software project, and consequéntly should provide the organization
with a more efficient benchmark for future project estimation and planning, and in retro-
spect, evaluating how well project resources were used.

B. PURPOSE OF RESEARCH

This research challenges the notion that raw historical values represent the preferred
benchmark for calibrating software cost estimation models. Computer-based simulation
is used to model the behavior of a number of synthetic project profiles to test the assump-
tions of both the conventional and normalized strategies for software estimation model
calibration. Various experimental conditions are imposed on subsequent experiments to
compare project results and identify causal relationships in an effort to substantiate the

research claims.




C. THE RESEARCH QUESTION

The primary research question of this thesis is to determine if there is long-term bene-
fit in using normalized software project cost values vice raw historical data as the bench-
mark for calibrating software estimation models.

D. SCOPE OF RESEARCH

The scope of this research includes the design, execution and analysis of a computer-
simulated, multiple-project experiment, and comparing the results of two competing soft-
ware estimation calibration strategies, in order to answer the research question. Its scope
does not extend beyond the research laboratory, and there are no immediate plans for
replicating this experiment in a real-world environment.

E. THESIS ORGANIZATION

Chapier 11 offers a statement of the experiment's objectives and a comprehensive de-
scription of the experimentation tools, to include the COnstructive COst MOdel of Soft-
ware Cost Esumation (COCOMO) and the System Dynamics (SD) Model of Software
Project Development. In addition, Chapter II presents the experimental design, where the
hypothetical projects, project profiles and influencing factors and assumptions are de-
fined in detail. A key element of Chapter Il is a discussion of the competing software es-
timation model calibration strategies which form the basis of this research. Chapter 111
describes the experimental setting and related tasks, and elaborates on exercise organiza-
tion, methodology and conduct. In addition, the dependent measures which represent key

exercise metrics, are defined as they relate to analyzing and comparing exercise results.




Chapter 1V presents the results of the vanous expenments and offers insight and analysis
of the research findings. Chapter V summanzes the findings of the previous chapters,

discusses the implications of this study, and proposes related opportunities and directions

for future research.







I1. METHOD AND PREPARATION

A. EXPERIMENTAL OBJECTIVE

This experiment will use a system dynamics model of software development to simu-
late the development of a set of 30 projects in a software organization, conductec iy
over an approximate 12-year period. The simulated results will be incorporated into an
organizational data base and used as the basis for both subsequent project estimation and
calibration of the estimation tool. Two scenarios will be evaluated: the conventional
method of calibration using raw historical data and an alternative calibration method us-

ing "normalized" metrics.

B. EXPERIMENTATION TOOLS
1. Constructive Cost Model (COCOMO)

The COnstructive COst MOdel, or COCOMO, was developed by Barry Boehm, and
is a widely-accepted algonthmic model which is used to determine initial software
development effort and schedule estimates. As a result of model refinement since its
introduction, three model versions and three software development modes have evolved.
The three versions include Basic, Intermediate and Detailed COCOMO, each of
increasing detail and accuracy. Organic, Semidetached, and Embedded software
development modes have been defined to accommodate the broad spectrum of project

size, specificity, and risk encountered in the software development environment.




Basic COCOMO is the simplest version of the model, and is effective for rough order
of magnitude estimates of software cost. However, Boehm cautions, "... its accuracy is
necessarily limited because of its lack of factors to account for differences in hardware
constraints, personnel quality and expenence, use of modern tools and techniques, and
other project attributes known to have a significant influence on software costs..."
(Boehm, 1981, p. 58) With Basic COCOMO, estimates of effort are generated using only
a single predictor variable, namely the number of delivered source instructions (DSI)
developed by the project.

Intermediate COCOMO improves upon the Basic version by incorporating an
additional 15 predictor variables, or cost driver attnibutes, which are carefully identified,
weighted and introduced in order to offset much of the cost variation found in Basic
COCOMO. The 15 cost drivers are subdivided into four categor.es: software product
attributes, computer attributes, personnel attributes, and project attributes. Each cost
driver has an associated effort multiplier which is applied to the nominal development
effort to obtain a more accurate estimate. Boehm contends that the level of accuracy
achieved with Intermediate COCOMO ".._ is representative of the current state of the art
in software cost models." (Boehm, 1984, p. 16)

Detailed COCOMO provides the highest levei of estimation accuracy by providing
even more detail as model input. This is accomplished by employing a three-level

hierarchical decomposition of the software product whose cost is to be estimated. In




addition, phase-sensitive effort multipliers are used to accurately reflect the effect of the
cost drivers on the phase distribution of effort. (Boehm, 1981, pp. 347-348)

The three COCOMO modes of software development were defined as a result of
research findings suggesting that software products of the same size often require varying
degrees of effort and development time. Consequently, each of the COCOMO software
development mode's effort and schedule equations will yield significantly different cost
estimates. Hence, precise identification of the applicable mode, by means of its
distinguishing features, is critical in order to prevent estimation inaccuracies.

The organic mode represents projects that are relatively small in size, developed by
small software teams in a generally stable development environment. Expenence levels
are high, while schedule and performance pressures are generally lower.

The semidetached mode represents the middle ground between the organic and
embedded modes. Flexibility of approach 1s a trademark of the semidetached mode, as
intermediate levels of project characteristics and a blend of organic and embedded mode
characteristics may be encountered in the same project.

Finally, the embedded mode represents a project that must operate within tight
constraints. Requirements and interface specifications are generally inflexible, and can
dictate a considerable need for innovative architectures, algorithms or functionalities.
(Boehm, 1981, p.81)

In this series of experiments, the Basic COCOMO version will be utilized as the

software estimation model. While Intermediate COCOMO estimates have proven ciearly




superior, the rudimentary nature of the Basic COCOMO (only size input - no cost dnver
attnbutes) facilitates evaluation of model charactenstics in conjunction with the SD
simulator. Likewise, the organic software development mode compiements the choice of
Basic COCOMO, and assumes a stable baseline software development environment in

which the experiments can be conducted.
2. A Dynmamic Simulation Model of Software Development
Research has underscored the impracticalities of controlled experimentation in the

software engineering field as being excessively costly and time-consuming (Myers,
1978). Simulation modeling provides a flexible and ideal environment in which
competing assumptions and conditions may be tested. Unlike real systems, the effects of
vanable manipulation on internal system interactions can be isolated and more carefully
studied. Consequently, for purposes of this experiment, simulation modeling was chosen
as the experimental method by which the research question would be answered.

The System Dynamics (SD) Model of Software Project Development, by
Abdel-Hamid and Madnick, is a comprehensive, highly-detailed, quantitative simulation
model which captures management-system dynamics and provides a continuous
simulation capability. Based on the feedback principles of system dynamics, the model
focuses on four interconnected subsystems, which integrate managernial decision-making
activities (e.g., scheduling, productivity, and staffing) with the physical production of the

software product (e.g., design, coding, reviewing, and testing). The four subsystems are
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human resource management, software production, controlling, and planning.
(Abdel-Hamid, 1993, p. 24)

The purpose of the SD simulator is to serve as a laboratory vehicle for conducting
expenmentation into the dynamics of software development. As such, it provides a
much-needed means by which the managenal side of the software development process
might be more carefully examined and, hopefully, better understood. By design, the
model does not deliver point predictions, but rather seeks to provide a general
understanding of the nature of the dynamic behavior of a project. An important
functionality of the model is the ability to perform sensitivity analysis, or "what-if"
experiments, in order to develop a more complete understanding of the interrelationships
of software development variables and identification of causal relationships.

The model has been designed for use on medium sized, organic type software
projects (i.c., projects that are 10,000 to 250,000 lines of code and conducted in familiar,
in-house development environments) (Stephan, 1992, p. 13). For a detailed discussion of
the model's actual structure, formulation and validation, see Abdel-Hamid and Madnick

(1989 and 1991).

C. EXPERIMENTAL DESIGN
1. Definition of Experimental Projects

Five hypothetical software development projects, of varying representative sizes,
were initially defined and senalized as projects one through five. Their size was

established in terms of thousands of delivered source instructions (KDSI) to match both




the COCOMO and SD simulator input parameters. Table | presents project senals and

their respective sizes, which remain fixed throughout all expenments.

Project Serial Actual Size (KDSI)
1 40
2 50
3 60
4 70
5 80

Table 1. Expennmental Projects and Sizes
2. Underestimation of Project Size

Boehm states, "The software undersizing problem is our most critical road block to
accurate software cost estimation.” He cites three main reasons for this perplexing
phenomenon. First, people's optimistic and accommodating nature drive them to say
what others want to hear. High estimates are fuel for confrontation, whereas everyone is
happy with small, easy software. The second reason involves incomplete recall of the
large amount of support software that must be developed as part of a project -- there is
generally a stronger recollection of the size and effort required for the much smaller, but
more visible, operational software. The third reason is related to the incomplete recall
issue. Unfamilianty with the full scope of the software project causes people to overiook
the more obscure software products (and obscure portions of each product) which need to
be developed. There are no quick fixes to the pervasive undersizing problem other than
to understand the sources of the problem, and apply that understanding to software sizing

activities. (Boehm, 1981, pp. 320-323)




A study of the impact of undersizing on software estimation forms the focus of much
of this experiment. Consequently, underestimation levels, expressed as a percentage of
actual project size, are applied to the individual project senals in accordance with the
experimental project profile, which is defined in a subsequent section of this report.

Underestimation levels are defined and presented in Table 2.

Level Underestimation (%)
1 10
2 20
3 30
4 40
5 50

Table 2. Project Size Underestimation Levels
Undersizing has a direct effect on both the software cost model (COCOMO) and the
simulation model (SD simulator) results. Quite simply, a too-small sizing estimate
invariably results in a too-small cost estimate. For example, a SO KDSI project,
undersized by 20 percent, results in a Basic COCOMO estimation identical to that of an

accurately-sized 40 KDSI project.
3. Development of Project Profiles

The experiment seeks to model and analyze the software development activities of a
hypothetical organization over time. In developing a project profile for the organization,
particular attention was paid to a number of conditions within the organization that
would accomplish exercise objectives, while maintaining a reasonable degree of realism

with respect to the functioning of an actual software development organization.
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a. Project Teams

Five hypothetical software development teams are constructively assembled. As
teams, they will be assigned to one of the project senals — one team for each project
serial. There was no consideration given to team make-up in assembling the teams.
Although disregard for the effects of personnel attributes on team performance represents
an exercise artificiality, the assumption of essentially "homogeneous” project teams

facilitates unbiased interpretation of the exercise results.
b. Project Cycles

In order to investigate the long-term impact of calibration strategies on software
cost estimation, follow-on projects to the five project serials already defined is required.
Consequently, the concept of a project cycle is introduced. A project cycle is defined as
that period of time required for each of the five individual project serials to be
completed. The first iteration of this scheme is referred to as "Project Cycle One",
whereas subsequent iterations are labeled "Project Cycle Two", "Project Cycle Three",
etc. For purposes of this experiment, organizational software development activities will

span six project cycles.
c. Initial Project Team Assignments

With teams assembled, and projects and project cycles defined, the next step is to
determine a strategy for project assignment. Here the assumption is that all five software
development teams will commence work on the five project senals concurrently, at time

zero. For simplicity, and to provide a convenient project profile starting point,
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assignment of projects in project cvcle one matches team one with project one, team two

with project two, etc.. Table 3 outlines cycle one project assignments.

Project Cycle One
Project Team Project Assignment
One 1
Two 2
- Three 3
Four 4
Five 5

Table 3. Cycle One: Team and Project Assignments
d. Allocation of Undersizing Factors

In order 1o examine the cffects of undersizing on projects of varying size, the
previoush -defined size underestimation levels (Table 2) must be allocated in a random
manner across all projects. For project cycle one, this was accomplished by using a table
of numbers generated by a random process. Table 4 is such a table and is used in the
expeniment By arbitranly selecting the intersection of any row and column as the
starting point, a list of five numbers is systematically drawn by moving either to the left
or night. or upward or downward from this starting point until one of the underestimation
level values 1s encountered. This number is recorded in the list, and the movement
continues until a second number within the allowable range (one through five) is
encountered. After this second value is recorded in the list, the process repeats three
more times until the randomized list of five numbers is complete. For example.

underestimation levels are allocated for project cycle one by choosing row S, column 13
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71018(7(51313/6]4;26!8!3(116]510{0|5]5,7|8]1]0[1}2]9]1]4]3]4|7
819{411(910[8j4(6|6|8|6[3|3]212({3]7(4[7i5|1|5[7{6|3[7|914[|5!|5]3
510{0{6({7(4]0]0({0([1}19]|5{9[91|8|1{4]714(918{7]2;4|3{0]|8|6|4]|2
11951411 {5{21612}1914|1]1{5|8|414(4|6]1|8[7|8|6|4{8|7|4]4/01}]5
S16[4({4|1(8|7;2|8[3[6[1[S5{91{8]6[2]2{9[1{9(0(4|8(1|0(1[3[5[3]4
7(9121S5[1{(917({9|3(1[8(6|8|7|7|6{6|5({013(8]11]214;78/9 715
303[1315(915]1(4(0(8[2|5(6(3|5|4[6]5(712{6|7|8[9]9(9!8]0(9{1}5
119({014[0]109{9[5]|7{4|1[|5{9(4]7(614|8|2|6{4|41 8815438
5141417({2(01317({9({11019(6[2|9|7(4[716j1]1]6]1]2;219!5!/8{4,4/8
2(9181215(519(3|2{CG|4(9|0:6'4 4|21 [5]7{3(6(5]|5[415(7{9|66]4
917(16(2(6{71 713 (3311 {72(5{0(916 (V|1 |{31942]+[1}0|0}1{3]|7!7{3}7
5181214131308 |5[3}5]7]5}8,;3[519(3145/4,6[3]9}2}711]1}4]9]1
413(41915|10(3(6[2|9(7(4|6]2[5]|6]91813]611 _A 0315 7101810
Table 4. Table of Random Numbers. After Ref. (Roscoe, 1975, p. 410)




(Table 4) as the starting point and moving across the row to the right. The following
randomized list is generated: 4 - 2 -3 - 5- 1. These numerical values, corresponding to

underestimation levels, are allocated to cycle one projects as shown in Table 5.

Project Cycle One

Project # Undersizing Level
1 4

2
3
5

BNl & Wl o

1

Table 5. Cycle One: Projects and Undersizing Levels

For project cycles two through six, undersizing levels are allocated in accordance
with the Latin Square Design (Daniel and Terrell, 1975, pp. 209-215). Once the
cycle-one undersizing levels are determined and allocated to the five project serials in
ascending project-size order, Latin Square imposes a one-position downward shift of row
values to produce the undersizing allocation for cycle two. The procedure is repeated
through the six project cycles, which results in cycle-six undersizing levels identical to
those in cycle one. Table 6 presents the undersizing allocation for all projects across all
project cycles. This allocation plan is fixed, and is used for all experiments where

software size underestimation is assumed.
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Project Cycle ’
Project #| KDSI ! 2 3 4 5 6
Underestimation Level
1 40 4 1 ) 3 2 4
2 50 2 4 ] 5 3 2
3 60 3 2 4 1 5 3
4 70 5 3 2 4 1 5
5 80 1 5 3 2 4 !

Table 6. Project Undersizing Allocation

e. Project Team Assignments in Cycles Two through Six

In developing the project profile, it was decided that when a project team
completed their assigned project in cycle one, they would immediately be assigned a new
project and commence work in cycle two. That is, the team that finishes their cycle-one
project first, is assigned the first available project in cycle two. The second team to
finish cycle one gets the next available project in cycle two, and so on, until all five
teams "arrive” in project cycle two. Subsequent project assignments are determined in
the same manner through project cycle five.

The sequence of next-available projects for project cycles two through five are
randomly assigned. Their project assignment orders are determined by employing the
same randomization techniques described in the previous section, but with different
starting coordinates and directions of movement for generating the randomized list for

each cycle.




To facilitate comparative analysis of results with cycle one projects, cycle six

team assignments replicate their initial project assignments.

next-available project scheme for all six project cycles.

Table 7 defines the

OPrr((i;;:tf Project Cycle
e[ 2 [ [ [ 5]
Cycle Next-Avalibale Project
! 2 3 1 5 1
2 1 4 4 4 2
3 3 1 5 2 3
4 5 5 3 ] 4
5 4 2 2 3 5

Table 7. Next-Available Project Schedule

S Finalized Experimental Project Profile

The final project profile, which incorporates next-available project assignments

and their respective undersizing levels, is presented in Table 8. All experiments follow

this project-order and undersizing arrangement (when applicable). While project team

assignments in other than the initial project cycle may vary under different exercise

scenanos, depending on calculated total development schedule values, the follow-on

project order and underestimation levels of Table 8 remain fixed in all cases. Figure 1

displays a representative Total Development Schedule for all five project teams over six

project cycles, applying the experimental project profile.
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Project Cycle One | Project Cycle Two [ Project Cycle Three [Project Cycle Four|Project Cycle Five| Project Cycle Six
Project | Undersize | Project |Undersize| Project | Undersize | Project | Undersize| Project |Undersize| Project | Undersize
Team| Number Level Number Level Number Level Number Level Number Level Number Level

1 1 4 2 4 4 2 4 4 5 4 ] 4
2 2 2 ! I 3 4 1 3 4 1 2 2
3 3 3 3 2 1 5 5 2 2 3 3 3
4 4 S 5 5 2 1 2 5 3 5 4 5
5 5 1 4 3 5 3 3 1 I 2 S ]

Table 8. Final Experimental Project Profile
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4. Learning

The effects of "learning” on software estimation and productivity are an important
element of this research. It is reasonable to assume that the effect of experience and
increases in project familiarity should be reflected in higher productivity. In an attempt
to model the rate of leaming improvement, a plan involving the incremental increase of a
related SD simulator input variable was developed.

in the SD model, nominal productivity is defined as one task per man-dav. A task is
any arbitrarv unit by which a software project may be measured (Abdel-Hamid and
Madnick. 1991, p. 80). In our experimentation vehicle, a "task” is defined in terms of a
discrete number of Delivered Source Instructions, hence the SD input parameter
Delivered Source Instructions per Task (DSIPTK).  Consequently, an appropriate
increase in DSIPTK over the nominal simulator value as projects are developed, can
effectivels model the 'learning curve' effect we are searching for.

For purposes of this experiment, we assume that "learning” is reflected in a
10-percent annual increase in DSIPTK. While total project development schedules
obviously vary, an 18 to 24-month timeframe represents a reasonable estimate of
duration for the hypothetical projects as defined. Consequently, a 20-percent increase in
DSIPTK was applied to each project cycle beginning with project cvcle two. This value
1s consistent with research findings and industry experiences (Aron, 1976). Hence, the

learning scenario is defined as an incremental increase of DSIPTK from 100 percent of

[£0]
[89]




nominal value to 200 percent of the nominal SD simulator value over the six project

cycles. Table 9 demonstrates how the learning scenario was applied.

DSIPTK: Percent of
Nominal Value

Project Cycle

1 100%
2 120%
3 140%
4 160%
5
6

180%
200%

Table 9. Leamning Scenario
S. Conventional COCOMO Calibration Strategy

"Calibration” is one method by which an organization may tailor a software
cost-estimation tool to more accurately reflect its unique software development
experiences. Boehm asserts that calibration of COCOMO may be necessary, for vanous
reasons, to provide an organization with the best estimation accuracy “fit". He offers a
technique for calibrating the constant term in the COCOMO nominal effort equation, and
this procedure will be replicated as part of the experiment, and throughout the thesis will
be referred to as the "conventional” calibration strategy.

Having selected the Basic COCOMO model and the organic mode as the most
appropriate software development mode for our hypothetical organization, the calibration
methodology is straightforward. Table 10 presents the Basic COCOMO effort and

schedule equations for the organic mode. A few terms require definition in




understanding these equations. Under the ~ffort column, "MM" refers to the number of
man-months estimated for the software development phase. One man-month is equal to
152 hours of working time. Under Schedule, "TDEV" is the number of estimated

months for software development.

Mode Effort Schedule
Organic MM = 2.4 (KDSH'*"* TDEV =25 (MM’ ™

Table 10. Basic COCOMO Effort and Schedule Equations (Organic Mode)
The constant term in the effort equation above (2.4) is the value which is calibrated.
Because of the absence of cost driver attributes in Basic COCOMO, the optimal

coefficient may be calculated using the following equation:
n
E, _ Z,=1 MM (actual)*();
= - -
21—-—] (2N)

In the above equation, MM (actual) is the actual development effort of the software

2.0

project. In our experiment, this value is generated by the SD simulator, based on input
values which include the Basic COCOMO effort and schedule estimates. The variable Q,
for organic mode re-calibration, is defined as the actual size of the project (KDSI(actual))
raised to the power 1.05. Having determined these values, the calibration process
continues by multiplying MM (actual) times Q, for each project. The summation of this
product is determined for the number of projects being factored in to the re-calibration
(n). This value forms the numerator of the re-calibration equation. The denominator is
calculated by first squaring each Q, value, then summing these values. The resultant

coefficient represents the derived optimal constant term and replaces the organic




COCOMO coefficient value of 2.4 for estimation of the next senes of (n) projects.
Chapter IV provides additional clarification of the calibration methodology using

exercise data.
6. Alternative '"Normalization' Calibration Strategy

Boehm commented on a comparative analysis of sofiware cost models, that "...Not
too surprisingly, the best results were generally obtained using models with calibration
coefficients against data sets with few points...." (Boehm, 1984, p. 18). A similar
analysis of the validity of the assumptions upon which calibration strategies are based,
and their impact on software estimation model performance has received considerably
less attention.

Basic COCOMO embraces the assumption that historical project results represent the
preferred and most reliable benchmarks for future estimation purposes. This experiment
challenges that notion, and seeks to validate the work of Abdel-Hamid by using the SD
model as an experimental vehicle to demonstrate why this assumption is flawed
(Abdel-Hamid, 1990, p. 79).

Using data from a real software project conducted by NASA, Abdel-Hamid
conducted two experiments as part of SD model validation. The first experiment
investigated one of two fundamental assumptions upon which conventional calibration
strategies are based. That is, a project's final resuits are independent of its initial
estimation values. His research findings indicate that different estimates do, indeed,

create different projects. He reported that initial project effort and schedule estimates




significantly influence work force level decisions, productivity, work intensity, and
communication and training overheads. Clearly, acceptance of these findings leads to
rejection of the convention that actual project results provide the best information for
future estimation activities.

Abdel-Hamid's second expeniment sought to further refute the notion that raw
historical project values should be the "data of choice” for both the calibration and
ex-post-facto evaluation of estimation tools. Again, using the NASA data, he reported
how the initial 35-percent size underestimation lead to a corresponding underestimate of
project effort and duration. He observed how leaming, in the form of increased project
familiarity and experience, lead to the discovery of overlooked tasks, which in turn
resulted in a dramatic "staff explosion” late in the development cycle, in order to meet a
rigid deadline. At this point, the representativeness of NASA's actual project cost as the
basis for future effort estimation becomes suspect due to the problematic nature of the
project. A new project of similar size and scope, but more accurately sized at the outset,
and consequently more effectively staffed, should result in project costs somewhat less
than the actual results of NASA's troublesome effort.

In his work, Abdel-Hamid outlines a "normalization” strategy for eliminating
inefficiencies due to initial project undersizing which incorporates the capabilities of the
SD simulator. Much of this research work is aimed at examining and testing this strategy

against the conventional calibration strategy under a variety of conditions and scenarios.




In theory, the normmalization strategy seeks to determine the extent of man-day
excesses, and adjust the archived calibration/estimation values accordingly. Figure 2

diagrams both the current calibration practice and the proposed normalization strategy.

RAW HISTORICAL CALTBRATION/
RESULTS > ESTIMATION

RAW HINTORICAL “NORMALIZATION NORMALIZED > CALIBRATION /
RESUL TN ENGINE VALUES ESTIMATION

(B) PROPOSED NORMALIZATION STRATEGY

Figure 2. (a) Current Practice: (b) Proposed Normalization Strategy

To determine the normalized cost value, a project must be re-simulated with no
undersizing  Optimization of cost savings is determined by repeated simulations in
which actual project size and schedule inputs are fixed, while effort inputs are
systematically reduced until further input reductions begin to yield higher cost outputs.

The tnput and output values generated during a typical normalization process are
presented tn Table 11. Repeated simulations in which actual project effort (MM(est)) is
systematically reduced with each simulation, yields a series of actual costs (MM(act)).
The shaded cell in Table 11 is the lowest numerical result generated by the SD simulator

under all input conditions. This represents the project's "normalized” man-month value




and reflects the optimum cost savings achievable in a perfectly-sized project.

The

estimated versus actual cost values of Table 11 are graphically represented in Figure 3 to

further illustrate the normalization process

Cycle #1, Project #1

KDSI (est) TDEYV (est) MM (est) MM (act)
40 18.5 120.9 120.6
40 18.5 115 1153
40 18.5 110 114.6
40 18.5 105 113.4
40 18.5 100 112.7
% 183 o5 | s
40 185 90 27
40 18.5 85 113.3
40 18.5 80 115.4

Table 11. Normalization Values
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I1l. CONDUCTING THE EXPERIMENT

A. EXPERIMENTAL SETTING

All experiments involve extensive simulation modeling and cos: estimation calcula-
tions. In addition, archiving requirements for a significant volume of generated data 1s
necessary, as well as relational processing capabilities to conduct comparative analysis of
the findings. These requirements were satisfied, and the experimental tasks successfully
accomplished on an [BM-compatible 486-DX2/66 personal computer (PC).

The System Dynamics (SD) simulator runs in the MS-DOS environment, however the
PC was configured to run the application in a window of Microsoft Windows 3.1, to fa-
cilitate transfer of information. User interface is via the keyboard. Figure 4 is the
"changes" screen, where input parameters are entered to examine the various exercise
scenarios. Of note, the fields routinely used in experiment simulations are found on this
screen such as DSIPTK and UNDEST (first column), 7OTMM (second column), and
TDEV] (third column). A tailored report is also generated for each completed simula-
tion, and provides not only a convenient presentation of simulation results, but also dis-
plays initial input parameteis to permit easy verification of data entry. A copy of one
such report is presented in Figure 5.

An electronic spreadsheet, specifically Lotus 1-2-3, release 4.1 for Windows, was cho-
sen as the appropriate application for managiig and presenting the experimental data. It

offers advanced spreadsheet, charting, drawing, scenario and database features which
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Figure 4. SD Simulator "CHANGES" Screen

N

24.0 KDSI
127.3 Person-Months:é
12.5 Months

40.0 KDSI
161.7 Map-Months
15.3 Months

Figure 5. Tailored Simulation Report
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were extremely valuable tools in conducting, analyzing, documenting and presenting the
results of the experiment.
B. RELATED EXPERIMENTAL TASKS

With a clear statement of the experimental objective, appropriate choice of expen-
mentation vehicles, and a valid experiment design, several administrative tasks remain
to facilitate conducting the experiment and handling the data. [mportant to this pre-
execution phase is the development of a number of worksheet templates in Lotus 1-2-3.
The "calculations worksheets" are of particular value -- project profile data and simulated
project cost data are directly entered here. lncorpbrated within the calculations work-
sheets are numeric cell formulas and interrelationships such that upon appropriate entry
of project data, key dependent values are automatically calculated. Figure 6 is an exam-
ple of a calculations worksheet. A detailed explanation of the calculations worksheet's
operation is presented with the research findings in Chapter [V.

In addition, a number of tailored spreadsheet tables were developed to archive, per-
form comparative analysis on, and display the collected data in a consolidated, readable
format. Appendix B is an example of this type of tailored spreadsheet table.

C. DEPENDENT MEASURES

Answering the research question requires capturing key simulation and computational

data on project performance and productivity. These values are absolutely essential to

meaningful analysis and interpretation of the research findings. Each of these values is
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described below; parenthetical text following each heading reflects the abbreviation used

for this value throughout the thesis:
1. Actual Project Effort (MM(act))

Actual Project Effort is one of the dependent variables generated by the SD
simulator, and represents the number of actual man-months required for the software

development phase of each individual project.
2. Actual Project Schedule (TDEV(act))

This value is also a dependent variable generated by the SD simulator, and represents
the actual number of months required for completion of the software development phase

of each individual project.
3. Actual Project Productivity (Productivity)

Actual Project Productivity is an important metric by which competing calibration
strategies are compared and evaluated. It is calculated by dividing the actual project size
(KDSI(act)) by the actual project effort (MM(act)). This value is calculated ex-post-facto
for each individual project. It is expressed as a decimal value, and there is an inverse

relationship between actual project effort and actual project productivity.
4. Compeosite Cycle Productivity (Comp Prod)

Composite cycle productivity is a deterministic value which reflects the combined
productivity of all five projects as defined in a particular project cycle. It is calculated by
dividing the total actual size of all projects in the cycle (summation of KDSI(act)), by the
total actual effort of all projects (summation of MM (actual)). Since the total actual size

of all projects in each cycle is fixed (300 KDSI), composite productivity is driven by the




value of total project effort — the lower the total effort, the higher the composite

productivity.
S. Average Staff (4vg Staff)

This value represents the average staffing level for each project. The accurate
projection of required staff levels is a critical function in software development.
Average Staff is calculated in COCOMO by dividing the actual project effort (MM(act))

by the actual project schedule (TDEV(act)).
6. Normalized Project Effort (MM(norm))

Normalized Project Effort is the value resulting from the application of the
normalization process, described in detail in Chapter II, to Actual Project Effort
(MM(act)). Its value represents an optimal achievable level of project effort and forms
the basis for calculation of the COCOMO Calibration Coefficient in the alternative

calibration strategy which is examined in this experiment.
7. COCOMO Calibration Coefficient (Coefficient)

"Calibration” is one method by which an organization may tailor a software cost
estimation tool to more accurately reflect its unique software development experiences.
"Coefficient" refers to the constant term in the COCOMO nominal effort equation, and
its calculated value is critical to subsequent model estimation accuracy. The central
issue in the evaluation of the conventional versus the alternate (normalized) calibration
strategies involves the appropriateness of the independent variable upon which the

coefficient calculation is based. In the conventional calibration strategy, it is based on
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actual project effort (MM(act)), while the normalized calibration strategy bases its
computation on normalized project effort (MM(norm)).
D. ORGANIZING THE EXPERIMENT

The experiment is conducted in four phases. Presented in this section of the report are
the research objectives of the various experiments, an explanation of how each phase is
organized, and a general explanation of the exercise "flow". Detailed process definitions

are presented along with the experimental results and analyses in Chapter IV.
1. Phase One

The objective of this phase is to compare the simulated project cost results obtained
by applying the conventional software estimation tool calibration strategy, against a
similar set of cost values obtained by applying the normalized calibration strategy. Both
learning and undersizing are assumed in this scenario. The project profile determines the
project-set order and undersizing allocation for each of the six project cycles. The SD
simulator and COCOMO equations are used to both replicate the conventional
calibration strategy and test the alternative normalization strategy. Key computational
values (Dependent Measures) are captured, and a comparative analysis of the two
calibration strategies is offered. The data set collected in Phase One constitutes the "base

case" results, against which all other scenarios are tested.
2. Phase Two

In Phases Two through Four, the experiment is structured to perform sensitivity
analysis on the base case results. Different assumptions and environmental factors are

examined by using the SD simulator’s ability to change one input variable while holding
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all others constant. In each scenario, particular attention is paid to the effects of
"normalization”, vis-a-vis the conventional calibration strategy, on the expenmental
results.

The objective of Phase Two is to examine the effects of size underestimation on base
case results. A new case is developed where leaming is assumed, but no_size

underestimation. Simulated results for the same project set are calculated, applying both

the conventional and normalized calibration strategies, and compared with base case

findings. All other conditions are identical to those in Phase One.
3. Phase Three

The objective of Phase Three is to examine the effects of learning on base case
results. A new case is developed where undersizing is assumed, but no learning.
Simulated results for the same project set are calculated, applying both the conventional
and normalized calibration strategies, and cor.pared with base case findings. All other

conditions are identical to those in Phases One and Two.
4. Phase Four

The objective of Phase Four is to examine the impact of overestimation and
underestimation of productivity on project-set results. In this scenario, we again assume
undersizing and no leamning, as in the previous experiment. However, this experiment
explores the effect of misrepresenting productivity as a function of how the level of effort
associated with the accomplishment of a software development "task" is defined within

the organization.
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Central to the productivity overestimation/underestimation question is the notion of
"variable task definition." Disparate definitions of the effort required to accomplish a
software task may account for situations where various software development organiza-
tions require different levels of development effort to design and code projects of similar
size and scope. In projects where the number of delivered source instructions is identical
in each organization, the value of "task” becomes the determinant with regard to measur-
ing effort, and hence, productivity. First, this experiment re-simulates the project set and
examines the impact of undérestimating productivity by a factor of 75 percent of the
nominal case. Next, the project set is re-simulated, this time overestimating productivity
by a factor of 125 percent of the nominal case. The results are compared to Phase Three,
which models the nominal case in this scenario (undersizing, no learning, and "perfectly-

represented” productivity).
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. INTRODUCTION

The SD simulation model generated raw data on the actual cost and schedule for each
simulated project. The manner in which these values are applied in calibrating the CO-
COMO software estimation tool, and its impact on productivity and cost savings under a
series of conditions are the central focu:s of this analysis. As such, there are four princi-
pal areas of investigation. First, the replication of a conventional software estimation
tool calibration strategy using raw cost data and assuming both learning and undersizing,
is compared with an alternative calibration strategy using normalized cost data under the
same assumptio.is. Ne'*  "ase-case results of phase one are compared with simulated
results of a new case assuming learning but no undersizing. The third area of investiga-
tion is a comparison of the base-case results with a new case in which there is undersiz-
ing, but without learning effects. Finally, the impact of both underestimation and
overestimation of productivity on the results obtained in the scenario with undersizing

and without learning is examined.
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B. CONVENTIONAL VS. ALTERNATIVE CALIBRATION STRATEGIES WITH
LEARNING AND UNDERSIZING (BASE CASE)

1. Assumptions

a. Underestimation of Project Size

The Basic COCOMO schedule estimation model requires as its single input, a
user-provided estimate of the project's size in thousands of delivered source instructions
(KDSI). Consequently, an inaccurate size estimate input will result in a stmilarly impre-
cise schedule estimation output. The inclination toward project size underestimation is
not uncommon throughout the software industry (Boehm, 1981, p. 320). For purposes of
this experiment, size underestimation, when applied, is represented as a percentage of
actual project size. Undersizing is assumed to range from 10 percent to 50 percent, in
10-percent increments, and is applied to individual project serials in accordance with the
project/cycle profiles presented in Chapter II. The undersizing percentages, expressed in
decimal notation, are subsequently applied as the SD simulator input parameter
UNDEST.

b. The Effects of "Learning" on Software Estimation and Productivity

By "learning" we mean increases in productivity. This learning happens as an or-
ganization gains experience in developing its type of software and as it incorporates new
software development tools. As discussed in Chapter II, we assume that "learning” is re-
flected in a 10-percent annual increase in the SD simulator input parameter Delivered

Source Instructions per Task (DSIPTK). Consequently, with project schedules generally




approaching two years' duration, a 20-percent increase in DSIPTK was applied to each
project cycle beginning with project cycle two. Therefore, the learning scenario is de-
fined as an incremental increase of DSIPTK from 100 percent to 200 percent of the
nominal value over the six project cycles.

2. Conventional Calibration Strategy

Five synthetic project serials were simulated over six organizational project cycles,
for a total of 30 simulations. Key computational values, as defined in Chapter III, were
calculated and tracked throughout the experiment. They include Acrual Project Effort
(MM(actual)), Actual Project Schedule (TDEV(act)), COCOMO Calibration Coefficient
(Coefficient), Actual Project Productivity (Productivity), Composite Cycle Productivity
(Comp Prod), and Average Number of Staff Required (Avg Staff). Appendix A presents
all calculations and data used to generate these key values, which are further consoli-
dated and summarized in Table 12.

The methodology for determining actual simulated values will be described as the
process unfolds in Appendix A. In the following discussion, descriptive abbreviations in
parenthesis correspond to column labels in Appendix A. For each project serial (Proj Se-
nal), a learning value (DSIPTK (%)) is assigned. A project size estimate (KDSI(est)) is
determined by multiplying the actual project size (KDSl(act)) times the size
underestimation percentage (Under (%)). Using this project size estimate (KDSl(est)) as

the input variable to the organic COCOMO formula, the estimated project effort
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CYCLE #1 (ESTIMATES)

CYCLE #1 (ACTUALS - SIMULATED)

Proj Seilal | KDSI (est) MM (o3} [TDEV {estl KU'SI (act actual ac oefficient | Productivity
1 24 67.5 124 40 185 . _ 033
2 40 1154 15.2 50 149.7 _@I.\; o 033
3 42 | 121s 15.5 60 187.6 19.9 ‘ 032
4 o3 N 1003 | 144 70 2458 | 219 | | 028
5 |72 214 [ 192 80 2423 22.3 256 0.33
CYCLE #2 (ESTIMATES) CYCLE #2 (ACTUALS - SIMULATED)
osl) | o8 88 Productivily T Comp Pr Avg. Stall
. @a\ " - P .. il - - P <
1 I 38 | 1102 1 148 4 o [ - B T
3 ;48 1491 167 60 R X 9.5
s | 40 1231 56 [ 80 T ] o2 | | 1ar
4 L 49 1 152.4 16.9 70 2 ] 273 0.3 0.302 11

CYCLE #3 (ESTIMATES)

::,
187 _

CYCLE #3 (ACTUALS - SIMULATED)

Comp Prod | Avg. Staff
L comp Frod L Avg Staft

1

CYCLE #4 (ESTIMATES)

!
|

W N B

CYCLE #5 (ESTIMATES)

Prof Serial o50) | MM (o81)

CYCLE #5 (ACTUALS - SIMULATED)

78 1528
4 63 | 2031
2 35 | 1085
3 30 882 S
1 2 99.7 0.308

CYCLE #8 (ESTIMATES)

Table 12. Conventional Calibration Strategy
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(MM(est)) and estimated project schedule (TDEV(est)) are determined. All required in-

put parameters for the project simulation have now been calculated. They are,
KDSl(act), DSIPTK (%) -- expressed as a numerical value based on the nominal simula-
tor value of 60, Under (%) — expressed as a decimal value, MM(est), and TDEV(est).
Next, the SD simulator generates the actual effort (MM(act)) and actual schedule
(TDEV(act)) values.

The second series of calcuiations presented in each project cycle in Appendix A,
uses the simulated actual effort and schedule values of each of the five project senals to
determine the COCOMO calibration coefficient (C-oefﬁcient) which will be applied to all
projects in the subsequent project cycle. Coefficient calculation is based on a series of
well-defined computations as described in Chapter II. In the case of project cycle one,
the Coefficient of 2.56 reflects an upward adjustment from the organic COCOMO value
of 2.4. If this "conventional" calibration strategy is effective, this higher value, when ap-
plied to project cycle two size estimations, should produce more accurate effort and
schedule estimates. Figure 7 shows the movement of the COCOMO calibration coeffi-
cient over the six project cycles under the conventional calibration strategy.

In addition, actual project productivity (Productivity) and composite cycle productiv-
ity (Comp Prod) are also determined in Appendix A. Actual project productivity (Pro-
ductivity) is defined as the actual size of the project (KDSI(act)) divided by the actual
cost of the project (MM(actual)). Results of the experiment are displayed in Figure 8,

and reflect individual prcject productivities between .27 and .43.
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Figure 7. COCOMO Calibration Coefficient: Conventional Calibration Strategy - Base Case
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Composite cycle productivity is defined as the total actual size of all projects in the

cycle (ZKDSI (act)), divided by the total actual effort of all projects (MM (act)). In
the conventional calibration scenario, overall composite productivity of the software de-

velopment organization through the six project cycles improved from .317 to .411 (29.65
percent). Figure 9 captures this upward movement of composite productivity.

3. Alternative Calibration Strategy

The methodology employed in applying the alternative calibration strategy is identi-
cal to the conventional strategy described in the previous section, with one important ex-
ception. As described in Chapter II, upon determination of actual cost and schedule
vaiues using conventional COCOMO techniques, the projects are re-simulated with ac-
tual size and actual schedule inputs fixed. Cost estimates are gradually reduced from the
actual simulated value until the optimum savings, or "normalized” cost value, is
achieved. Appendix B provides all data on the normalization process for each of the five
project serials over the six project cycles. Shaded cells in the MM(act) column represent
the optimum or "normalized” value for that particular project. This value, referred to as
MM(norm), is incorporated in the organizational data base and is used to calculate the
new COCOMO calibration coefficient. Appendix C presents all calculations and data as-
sociated with the calibration of COCOMO using normalized data. Note its similarities
with Appendix A. However, in the second series of calculations for each project cycle,
the normalized effort (MM(norm)) is a new column entry. Its value was computed as

part of the normalization process and transferred directly from the shaded cells in
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Appendix B. It is this value, MM(norm), which generates the new COCOMO coeffi-
cient, and not the actual effort cost value (MM(act)), as in the conventional calibration
strategy.

It is important to note that normalization of the effort cost data has no direcr impact

on project productivity or composite cycle productivity, as actual effort costs continue to

be used in computing these values. Normalization is primarily a process by which the in-
efficiencies which have plagued a problematic software development project can be
eliminated. In so doing, it is possible for an organization to optimize the accuracy and
representativeness of archived data for future estimation of similar projects.

A by-product of the normalization process, however, is improved productivity. In
theory, normalization provides the organization with more optimal calibration coeffi-
cients which should lead to more optimal estimations. As inefficiencies are eliminated in
project estimation, simulations produce projects with lower actual costs, which in turn,
lead to improved productivity. These notions are borne out in the experimental findings
summarized in Figure 10 and Table 13 — a comparison of the previously-determined raw
historical data with the normalized data recorded upon re-simulation of the identical pro-
ject set. Improvement percentages for normalized data versus raw data are calculated in
Table 13 for actual cost, productivity, and composite productivity values. Note that be-
ginning with project cycle two (when the normalization process first produces a unique

calibration coefficient), improvement is noted across all entries. While improvements
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Cycle & Project Raw Data Normalized Data Percent Improvement
Cvcle# _ IProject# IDSIPTK (%]MM (act) _[Productivity|Comp.Prod |DSIPTK (%]MM (act) _ |Productivity]Comp.Prod | MM (act] |Productivity[Comp.Prod
11T 1 T 100% 120.8 0.33 100% 120.9 0.33 0.00% 0.00%
1T # 100% 149.7 033 100% 3.7 0.33 0.00% 0.00% -
1 3 | —100% 187.6 0.32 100% 1876 0.32 0.00% 0.00%
1 4 100% 2458 0.28 100% 245.8 0.28 0.00% 0.00%
1 5 100% 2423 0.33 0.317 100% 2423 0.33 0.317 0.00% 000% | 0.00% |
2 2] 120% 1473 0.34 120% 1427 0.35 3.12% 2.94% N
2 1 T 120% 17.7 0.34 120% 1078 0.37 8.56% 8.82%
2 3 120% 1788 0.34 120% 165.9 0.36 7.41% 5.88%
2 5 120% 2014 027 | 120% 277.9 0.28 4.63% 741% ]
2 4 120% 209.9 033 0.317 120% 207.7 0.34 0.333 1.05% 3.03% 5.05%
3 4 140% 2165 0.32 140% 1821 0.38 16.89% | 18.75%
3 3 140% 189.2 0.32 140% 164.8 0.36 12.90% | 12.50%
3 1 140% 1231 0.32 140% 104.6 0.38 15.03% 18.75% o
3 2 140% 147 0.4 140% 122.7 041 16.53% 20.69%
3 T 85 1 140% 251.2 0.32 0.324 140% 220.9 0.35 0.373 8.48% 9.38% 15.12%
4 T 4 180% 2121 0.33 160% 188 0.37 11.36% | 12.12%
4 1 160% 1114 0.38 160% 92.3 043 16.92% | 19.44%
T 4 5 160% 2338 0.34 160% 199.9 04 14.50% 17.65%
N 160% 146.9 0.34 160% 128 0.39 1287% | 14.71%
4 '3 160% 1656.7 0.38 0.3456 160% 138.6 0.43 0.402 16.42% | 19.44% | 16.52%
5 3 180% 225.9 0.35 180% 215.1 0.37 4.78% 5.71%
5 4 180% 180 0.39 180% 164.4 0.45 14.22% | 15.38%
5 2 180% 130.6 0.32 180% 1116 0.46 14.55% | 18.42%
5 3 180% 165.3 0.36 180% 161.9 0.39 8.11% 8.33%
5 1 180% 1005 04 0.374 180% 85.1 0.47 0.418 15.32% | 17.60% | 11.76%
8 1 200% 95.3 0.42 200% 84.1 0.48 1.75% | 14.20%
6 2 200% 117.2 043 200% 103.2 0.48 11.95% | 11.63%
8 3 200% 145.8 0.41 200% 130.9 0.46 10.22% | 12.20%
8 4 200% 180.5 0.30 200% 176.6 04 2.16% 2.56%
|6 5 200% 191.7 0.42 0.411 200% 170 0.47 0.451 11.32% | 1.90% | 9.73%

Table 13. Comparison of Conventional and Normalized Calibration Strategies - Base Case
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are noted in productivity values associated with both raw and normalized data, the more
dramatic results achieved through data normalization is apparent.

Of particular significance is the improvement in composite cycle productivity evident
within both the raw and normalized data sets themselves. Over the course of the six pro-
Jject cycles, composite productivity, as determined under the conventional calibration
strategy improved by 29.65 percent (from .317 to .411). Even more impressively, under
the normalization strategy, composite productivity values improved by 42.27 percent
(from .317 to .451). Recalling that in this scenario, experimental assumptions include
both learning and undersizing, it is logical to pursue investigation of alternative scenarios
in an effort to isolate and examine the effects of these assumptions.

The proper use of normalized effort cost data can have a significant impact on future
software development costs. Table 14 summarizes actual project effort (MM(act)) under
both the conventional and normalized calibration strategies. In addition, the table in-
cludes information on potential savings which may be achieved by archiving normalized
data in the organizational data base vice the actual cost data. These savings could result
when, in the future, the organization is faced with estimation of a project of similar size
and scope. By using normalized data as input, estimates would not be biased by the inef-
ficiencies which plagued the previous project. The potential savings in our problem set
are noteworthy, both in terms of real effort cost savings (2.2 to 34.4 man-months) and

percentage of reduction in cost (1.05 to 16.92 percent). Figure 11 graphically represents




Cycle and Project Information | Actual Project Effort Potential Savings Through
_ Conventional | _Normalized Normalization
Cycle #| Proj.Serial [KDSI (act) MM {act) MM(act) MM Percent
1 1 40 120.9 120.9 0 | 000%
1 2 50 149.7 149.7 0 | 0.00%
1 3 60 187.6 187.6 0 T 000%
1 4 70 2458 245.8 0 T 0.00% |
1 5 80 2423 2423 0 0.00% |
2 2 50 1473 1427 .46 312% |
2 1 40 1177 107.6 [ 101 858% |
2 3 60 178.6 165.9 L 127 7TA41% |
2 5 80 2914 —217.9 135 463% |
2 4 70 2099 207.7 22 1.05%
3 4 70 2165 1821 344 15.89%
3 3 60 189.2 164.8 24.4 12.90%
3 1 40 1231 104.6 185 15.03%
3 2 50 147 122.7 24.3 16.53%
3 5 80 251.2 229.9 213 8.48%
4 4 70 2121 188 241 11.36%
4 1 40 1111 92.3 18.8 16.92%
4 5 80 2338 199.9 339 |  14.50%
4 2 50 | 1469 128 189 | 1287%
4 3 60 | 1657 1385 272 16.42%
5 5 80 | 2259 215.1 10.8 4.78%
5 4 70 180 154.4 25.6 14.22%
5 2 50 130.6 1116 19 14.55%
5 3 60 165.3 151.9 134 8.11%
5 1 40 100.5 85.1 15.4 15.32%
6 1 40 95.3 84.1 11.2 11.75%
6 2 50 117.2 103.2 14 11.95%
6 3 60 145.8 130.9 14.9 10.22%
6 4 70 180.5 176.6 39 2.16%
6 5 80 191.7 ; 170 21.7 11.32%

Table 14. Potential Savings Through Normalization
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the potential cost savings achievable through normalization of all projects, beginning
with project cycle two.

These savings are possible since normalization removes the inefficiencies which lead
to smaller COCOMO coefficients, which in turn, lead to "tighter” (i.e., smaller) cost esti-
mates. On the other hand, the conventional calibration strategy produces higher calibra-
tion coefficients which subsequently lead to larger size estimates (Figure 12). As
discussed in Chapter H, these higher-than-ideal estimates significantly influence the pro-
ject's final results. Work expands to fill the available slack time, and the self-fulfilling
prophecy of Parkinson's Law is realized once again (Bochm, 1981, p. 592).

Estimated project productivity was calculated as a measure by which the effects of
project size underestimation could be observed on project behavior and outcome. Its cal-
culation differs from that of actual productivity in that the actual size of the project
(KDSI(act)) is divided by the COCOMO-generated estimate of project cost based on 7o
size underestimation (MM(est)). With post-facto knowledge of a project's actual size, an
estimated project effort value can be generated for the denominator value (MM(est)).
Figure 13 plots estimated project productivity versus project size for project cycle one
and both the conventional and normalized estimated productivity values for project cycle
six. It is clear from the plot that estimated productivity decreases as project size increases
in all three instances.

As defined, the estimated productivity value should "shadow” the actual productivity

value as it relates to the COCOMO-calibrated project effort estimate. When compared
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Figure 13. Estimated Productivity - Base Case
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against actual project productivity, estimated project productivity provides an indication
of the relative accuracy and validity of the software estimation tool and its calibration co-
efficient. Figures 14, 15, and 16 compare actual versus estimated project productivity as
a function of project size for project cycles one and both the raw and normalized in-
stances of project cycle six, respectively. In Figure 14, the trend toward convergence of
the actual and estimated productivity values appears ioosely related to initial project un-
dersizing. For example, the project with the smallest size underestimation (80 KDSI with
10% underestimation) has an actual productivity figure closest to its estimated productiv-
ity value. Likewise, the actual productivity of the project with the largest undersizing (70
KDSI with 50% underestimation) is furthest away from its estimated counterpart.

From Figure 13, it is evident that the conventional COCOMO calibration method has
lead to estimated productivity values in project cycle six approximately 10 percent more
than similar projects in cycle one. The normalization method yields values nearly 41 per-
cent higher than cycle one. Nevertheless, from Figure 15, conventional cycle six actual
productivity values exceeded their estimates by between 5.1 and 14 percent. With the
exception of the largely undersized project (70 KDSI, 50-percent undersizing), the nor-
malization strategy, shown in Figure 16, provides the best "fit", with estimated produc-
tivities ex..eeding actual productivities by an average of less than 1.5 percent.

This fact 1s also confirmed by using the completed project results for ex-post-facto

evaluation of the accuracy of the COCOMO estimation model. The percentage of
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Figure 14. Actual vs Estimated Productivity: Cycle One - Conventional Strategy - Base Case
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~ Actual vs Estimated Productivity - Cycle Six
(Normalization Calibration Strategy - Base Case)
05 ——
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Project Size (KDSI)

Figure 16. Actual vs Estimated Productivity: Cycle Six - Normalization Strategy - Base Case
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relative error in the accuracy of project cost estimation can be caluclated using the fol-

lowing equation:

100+ | AMM(act)-MM(est)|
MM(act)

Percent Relative Error = 4.1

Equation 4.1 1s used to determine the accuracy of the base case estimates generated under
both the conventional and normalized calibration strategies in cycles two through six of
the exercise scenario. Figure 17 is a plot of the average error for all projects by project
cycle, and the results suggest that the accuracy of COCOMO project cost estimation in
this scenario favors the normalized calibration model over the conventional model.
C. EFFECTS OF NO UNDERSIZING ON BASE CASE RESULTS

Having concluded an examination of conventional versus normalized calibration
strategies in a scenario that included both learning and undersizing (base case), the pro-
ject set was re-simulated under similar conditions, but assuming no undersizing. The
methodology was identical to the base case, with the exception that the SD simulator in-
put UNDEST was set at "0" in each project simulation to reflect "perfect” size estimation.
Appendices D, E, and F document the results of these re-simulations, again modeling
both the conventional and normalized calibration strategies. The results are summanzed
in Table 15.

A comparison with the base case results (Table 13) reveals some interesting findings.
With no undersizing, individual productivity improved in all projects and across all pro-
ject cvcles with respect to their undersized counterparts. In 18 of the 30 project senals,

however, the percentage of improvement in productivity realized through the
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Figure 17. Average Error in Accuracy of Estimation of Project Cost: Conventional vs Normalized
Calibration Strategies - Base Case
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normalization process, was /ess in this scenario (no undersizing) than in the base case
(with undersizing). This is reflected in Figure 18, where a plot of the average improve-
ment in productivities as a result of normalization shows minimal variance between the
two sceparios.

Composite cycle productivities within the domain of the "no undersizing” scenario,
again showed a significant improvement over the span of the six project cycles, with the
conventional strategy vielding an improvement of 32.3 percent, and the normalization
strategy 43.7 percent. These productivity improvements (without undersizing), however,
are only marginally better than those realized in the base case (with undersizing). Figure
19 presents a graphical summary of composite cycle productivity, comparing raw and
normalized results in both the undersizing and no-undersizing scenario. It is evident that
by the third project cycle, composite productivity under the normalized calibration strat-
egy surpasses the productivity values achieved under the conventional calibration strat-
egy, regardless of whether or not the project's size was underestimated. This finding
suggests that normalization may be an effective tool that can help offset the negative ef-
fects of project estimation undersizing. Nevertheless, further research is required to sup-
port this claim.

Estimated productivity compansons under this scenario reveal some interesting re-
sults. With no undersizing, actual and estimated individual project productivities are
nearly identical in cycle one (Figure 20). These values are the same in the conventional

and normalized cases, since the initial effect of the normalization process is not evident
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Figure 19. Composite Productivity: Conventional vs Normalized - Base Case vs Case With

Learning and No Undersizing
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until project cycle two. However, using the conventional strategy (raw data), estimates
of productivity begin to drift, and by cycle six lag actual productivities by a range of 6.8
percent to 10.86 percent (Figure 21). Conversely, normalized data continues to produce
precise estimates within one percent of actual productivity values in cycle six (Figure
22). This would indicate a more responsive calibration of the COCOMO constant by the
normalization process in this scenario.

The relative error in the accuracy of COCOMO's project cost estimation under con-
ventional and ncrmalized calibration strategies is quite dramatic in this scenario of no
undersizing, as can be clearly seen in Figure 23. With "perfect" size input, normalization
of the data results in consistent COCOMO cost estimates across all project cycles, with a
relative error rate of less than one-half percent. Conversely, while conventionally-
calibrated COCOMO produces "tight" cost estimates in project cycles one and two, the

error rate balloons to nearly ten percent by cycle six.

D. EFFECTS OF NO LEARNING ON BASE CASE RESULTS

In this expenment, the project set was re-simulated in a scenario which included un-
dersizing, but assumed no leaming between project cycles. The methodology differed
from the base case only in the fact that the SD simulator parameter DSIPTK remained
fixed at the default value of "60" for all project simulations. This effectively eliminated
the learning assumption, by modeling the experiment with a "flat" delivered-source-
instruction-per-task rate from cycle to cycle. Appendices G, H, and I document the results

of the experiment.
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Results of the experiment are summarized in Table 16, and show that while individ-
ual project productivity using the conventional calibration strategy varied between .26
and .35, composite productivity through the six project cycles decreased marginally from
317 to .311 (1.89 percent). In this scenario (undersizing but no learning), the normali-
zation strategy yielded minimal improvement, at best, over the conventional strategy in
terms of real effort (-2.92 percent to 6.54 percent), individual project productivity (-3.85
percent to 6.25 percent) and comy site productivity (.33 percent to 3.57 percent). In ad-
dition, with normalization, composite productivity over the six project cycles improved
only trivially from .317 to .318 {.315 percent). These composite productivity values are
graphically represented in Figure 24, and provide an important observation. The findings
suggest that, in an environment devoid of learning, both the conventional and normaliza-
tion calibration strategies are largely ineffective in improving productivity.

Similarly, both estimated productivity and relative accuracy values are inconclusive
in this scenario. In the case of the conventional strategy, raw data values produce under-
estimates of productivity averaging 4.5 percent, while the normalization strategy yields
overestimates averaging 8.9 percent. The accuracy of project cost estimation favors the
conventional COCOMO calibration strategy in three of the five project serials, besting

the normalized model's average relative error rate, 6.08 percent to 7.62 percent.
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(Case With Undersizing and No Learning)
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Figure 24. Composite Productivity: Conventional vs Normalized - Case With Undersizing and No

Learning
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E. THE EFFECTS OF OVERESTIMATION AND UNDERESTIMATION OF
PRODUCTIVITY ON SIMULATION RESULTS

The final series of experiments examines the impact of overestimation / underestima-
tion of productivity on project set results. In this scenario, we again assume undersizing
and no learning, as in the previous experiment. However, this experiment explores the
effect of misrepresenting productivity by virtue of how a "task" is defined.

Central to the notion of variable task definition is the situation where different soft-
ware development organizations require different development efforts to design and code
projects of a similar size and scope. Consequently, where DSI is constant and fixed in
both organizations, the value of "task" becomes the determinant with regard to measuring
effort.

First, the project set is re-simulated with underestimation and no learning, but with a
DSIPTK value fixed at 75 percent of the nominal case. The nominal case default value
of the SD simulator is "60", hence, the input metric is set at "45". Cost and productivity
values are calculated in the usual manner, using both the conventional and normalization
calibration strategies. Data and calculations are presented in Appendices J, K, and L, and
are summarized in Table 17. A comparison with Table 16 values (undersizing, no learn-
ing, nominal DSIPTK value), and employing the conventional strategy with raw histori-
cal data, reveals significantly lower individual project productivities in each instance.
Likewise, composite cycle productivities fall by 15.5 percent to 17.8 percent. The effects

of normalization under these experimental conditions are negligible. Both individual
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Cycle & Project Raw Data: DSIPTK = 75% | Normalized: DSIPTK = 75% Percent Improvement
Cycie# | Project # | MM (act) [Productivity|Comp.Prod| MM (ect) [Productivity]Comp.Prod| MM {act) [Productivity[Comp.Prod
[ 1 218 0.28 2218 0.28 0.00%] 0.00% | _
1 2 307.8 028 [ %78 0.28 0.00%| 0.00% ]
1 173 280.8 0.27 | 2898 0.27 00%] 000% |
i 4 187.4 0.23 187.4 0.23 0. 0.00%
AR S O T A "X | 0.28 0.262 138.1 028 0.262 0.00%' 0.00% [ 0.00%
| 2 | 2 1874 0.27 187.7 0.26 0.16%] -3.70%
2 i 138.1 0.20 1376 0.20 1 0.38%| 0.00% _
2 3 220.7 027 220 027 0.32%| 0.00%
2 61 3704 0.22 370.7 0.22 0.08% | 0.00%
2 4 2727 0.28 0.252 2524 0.25 0.252 T4A%| -365% | 0.00%
3 4 2658 0.26 2649 0.26 0.34% [ 0.00%
3 3 2354 0.25 2358 025 0.17%]_0.00%
3 1 1481 0.27 150 0.27 -1.28%| 0.00%
3 2 1839 0.27 753 0.20 4.26%] 741%
3 5 35 0.25 0.26 3248 0.25 0.261 043%] 000% | 0.38%
4 4 2848 0.26 2862 0.26 0.14%] 0.00%
] 1 143 028 1424 0.28 0.42%] G.00%
L] 5 309.7 0.26 32 0.28 0.74%| 0.00%
4 | 2 1922 0.26 1942 0.26 -1.04%| 0.00%
4 13 216 0.28 0.262 2145 0.28 0.261 0.60%| 0.00% | -0.38%
5 [] 327 0.23 339.2 0.24 1.02%] 4.35%
5 4 264.3 0.26 2567 027 2.880%| 3.85%
5 2 184.6 0.27 183.1 0.27 0.81%| 0.00%
5 3 2434 0.25 41.6 0.26 0.78%| 0.00%
5 1 140.1 0.27 0.263 1398 020 0.259 6.24%| 741% | 23T%
6 1 145.7 0.27 1462 027 0.34%] 0.00%
6 2 178.7 0.28 1786 0.28 0.11%] 0.00%
6 3 2276 0.26 2278 0.26 0.08%| 0.00%
[] 4 2984 023 204.7 0.24 1.24% | 4.35%
[ 5 300.9 0.27 0267 301.7 027 0.261 0.27%] 0.00% 0.00%

Table 17. Comparison of Conventional and Normalized Calibration Strategies:
Case With Undersizing, No Learning and DSIPTK = 75% of Nominal Case
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project productivities and composite cycle productivities are virtually unchanged despite
normalization (improvement range of -.38 percent to 2.37 percent).

Next, the DSIPTK value was set at 125 percent of the nominal case, or "75", and the
projects re-simulated yet again with all other conditions unchanged. Supporting data and
calculations are presented in Appendices M, N, and O, and are summarized in Table 18.
Results under the conventional strategy reveal a global improvement in individual project
productivity. Similarly, composite cycle productivity improves by an average of 10.34
percent over Table 16 (nominal) values. The effect of normalization in this scenario,
while not as dramatic as under the learning assumption (Table 13), nevertheless improves
composite productivity by an average of 11.96 percent over the Table 16 values, and
yields an improvement over conventional strategy values ranging from 2.09 to 4.85
percent.

Figure 25 is a graphical representation of composite productivity under all exercise
conditions described in this section, and includes data carried forward from the previous
section (DSIPTK = 100%) for comparison purposes. The composite productivity posi-
tioning is readily apparent and appears directly linked to DSIPTK values/percentages.
The figure also provides a view of the effects of normalization on each of the three data

sets. Clearly, the higher DSIPTK values yield the more significant normalization benefit.
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Cycle & Project | Raw Data: DSIPTK = 125% | Normalized: DSIPTK = 125% Percent improvement
Cycle# | Project# | MM (act) [Productivity|Comp.Prod| MM (acl) [Productivity[Comp.Prod| MM (act) [Productivity|Comp Prod
1 1 1086 | 037 | 109.5 0.37 0.00% 0.00%

1 2 | 1382 0.36 138.2 0.36 0.00% | 0.00% ﬁ
113 169 0.38 169 0.36 0.00% 000% |
1 |74 1 72338 03 1 7308 0.3 0.00% 0.00% |
1 5 2241 0.36 0.344 2244 0.36 0.344 0.00% 0.00% 0.00%
2 2 140.2 0.36 140.1 0.36 0.07% 0.00%
2 11 108.5 0.37 100.1 04 7.74% 8.11%
2 3 164.2 0.37 164.1 0.37 0.06% 0.00% ]
|2 5 280.7 029 273 0.29 274% | 0.00%

2 |74 2024 0.35 0335 | 1003 0.36 0.342 153% 0.00% | 2.09%
3 4 201 0.35 181.9 0.36 453% | 2.86%

3 3 176.8 0.34 1725 0.35 1.88% 2.94%

3 1 127 | 035 109 0.37 3.28% 5.71%

3 2 | 1425 0.35 128.7 0.39 9.68% | 11.43%

3 |5 240 033 0.344 2343 0.34 0.359 237% 3.03% 4.36%
4 | 4 218 0.32 205.8 0.34 5.60% 6.26% |

4 11 104.6 0.38 - 105.2 0.38 057% | 0.00%

4 T 2284 0.36 2194 0.36 3.94% 2.86%

4 |2 1467 | 034 138.7 0.36 545% | 5.88%

B S 1676 | 038 | 0361 | 15648 | 030 | 0364 | 1.78% | 263% | 370%
| 5 | 5 2567 0.31 257.3 0.31 023% | 0.00% ]

5 |4 206.3 0.34 186.7 0.37 8.50% 8.82%

5 2 1456 034 | 1348 0.37 742% | 8.82%
85 |3 | 839 0.33 1845 0.33 0.33% | 0.00%
5 11 116.8 0.35 0.33 102.8 0.38 0.346 1.23% | 1143% | 4.85%
(6 | 1 108.3 037 106.8 0.37 2.20% 0.00%
6 2 1377 03 [~ 1338 0.37 2.98% 2.78%
| 8 3 1688 0.36 1656 0.36 1 1.90% 0.00% ]
6 173 2313 0.3 2177 0.32 5.88% 8.67%
_6 1 5 223 0.36 0.345 212.2 0.38 1359 4.84% 5.56% 4.06%

Table 18. Comparison of Conventional and Normalized Calibration Strategies:
Case With Undersizing, No Learning and DSIPTK = 125% of Nominal Case
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V. CONCLUSIONS

A. SUMMARY OF FINDINGS AND IMPLICATIONS
The major objective of this thesis was to use simulation modeling to replicate the de-

velopment of a set of 30 hypothetical software projects, the results of which were used to
evaluate two competing calibration strategies for the COCOMO software estimation tool

in four experimental scenarios.
1. Phase One
In phase one, the simulated project costs obtained by applying the conventional

calibration strategy, were evaluated against a similar set of cost values obtained by
applying the normalized calibration strategy in a scenario which assumed both learning
and undersizing. The normalization process contributed to significant increases in both
individual project productivity and composite cycle productivity. The experiment
demonstrated that normalization provided the organization with more optimal calibration
coefficients which, in turn, lead to more optimal cost estimations. As inefficiencies were
eliminated in project cost estimation, simulations produced projects with lower actual
costs, and hence, improved productivity.

The experiment also demonstrated that the normalization strategy provided the soft-
ware organization with the potential for significant future cost savings. The normaliza-
tion process effectively removed many of the inefficiencies associated with undersized

projects. Consequently, archiving normalized cost data in the organizational data base
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vice the actual project results, produced more optimal estimates when identical projects

were re-simulated following model calibration. In contrast, as a result of higher calibra-
tion coefficients, the conventional calibration strategy produced consistently larger and
less optimgl cost estiraates.

Post-facto knowledge of the projects’ actual size was used to calculate two related ex-
ercise metrics, both of which provided an indication of the relative accuracy and validity
of the software estimation tool -- estimated productivity and relative error in cost estima-
tion. The normalized cost data produced the strongest correlation between actual and es-
timated productivity results, indicating that the model provided more accurate estimates.
This was confirmed when the computed accuracy of the base case COCOMO estimates

clearly favored the normalized calibration model.
2. Phase Two
In phase two, the base case results of phase one were compared with simulated

results of a new case assuming learning, but no undersizing. With no undersizing, both
the conventional and normalized calibration strategies produced global improvements in
project productivities over base case results. Normalization again provided cost benefit
over raw historical data, but in this scenario, the average improvement in individual
project productivity was less dramatic than in the base case. Similarly, composite cycle
productivities were only marginally improved over their base case counterparts. These
findings suggest that normalization may be an effective strategy to counterbalance the

detrimental effects of imitial project undersizing. Both estimated productivity and




relative accuracy solutions in this scenario revealed that the conventional calibration
strategy produced increasingly suboptimal model performance over the six project cycles
Con.vetscly, the normalized model continued to provi.ie extremely precise estimates
throughout all project cycles.

3. Phase Three

Phase three re-simulated the project set in a scenario which included project size
underestimation, but no learning. Normalization was least effective in this scenario,
yielding minimal improvement, at best, over the conventional strategy in all key cost and
productivity metrics. The findings suggest that without learning, both the conventional
and normalization calibration strategies are largely ineffective in improving productivity.

A comparison of relative model accuracy was also inconclusive in this scenario.
4. Phase Four

The final phase of the experiment investigated the impact of both underestimation and
overestimation of productivity on the results of the phase three experiment. First, with
productivity underestimated by a factor of 75 percent of the nominal case, all productiv-
ity metrics were degraded, and normalization had a negligible impact. Next, with produc-
tivity overestimated by a factor of 125 percent of the nominal case, all productivity
values showed improvement. Normalization was again effective in this scenario, but less
dramatically than in the base case (learning and no undersizing). Productivity in this sce-
nario appears directly linked to the concept of variable task definition as it relates to the

number of delivered source instructions per task (DSIPTK). In addition, the effects of
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normalization also tend to follow this DSIPTK movement — the higher DSIPTK values
yield the more significant normalization benefit.
B. FURTHER RESEARCH RECOMMENDATIONS

Three interesung research directions could be pursued as follow-on to this study. The
first possibility is a validation of the findings of this simulation-based study by conduct-
ing an experiment in a real organization to compare the iwo strategies. Second, the cur-
rent normalization strategy seeks to eliminate the inefficiencies caused by undersizing.
The SD simulator could be used to examine the possibilities of eliminating other sources
of inefficiency such as the misallocation of staff resources. Third, the normalization
process requires repeated simulations to arrive at the optimal cost solution, and as such,
is quite labor and time-intensive. The possibility for automating the process, perhaps em-

ploying artificial intelligence techniques, could be investigated.
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APPENDIX A. CONVENTIONAL CALIBRATION STRATEGY:

BASE CASE
CYCLE #1(Rew Data) b
‘*Eﬂ',‘llﬁiﬂ}.’d (%) [ KDISH (act) | Under (%) | KDST (eut) | WM (eat) . TUEV () )
T 100 10 Ty 4 87. : 2. N )
3 100 %0
5 100 f i)
[ 100 | 70
5 100 80
i 4
2 1459
3 178.
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1 40 10 36 1102 149 1177 166 '

E ac 20 48 149.1 1 1786 18.¢ —

E 80 50 40 1231 156 >l 2914 21. '

4 70 30 45 | 1594 1 9 | 193

1 123.1 117.7 48 | 505 14635 2304 (L7 0.34

3 188.5 1786 74 13216 27851 5476 |1 0.34

5 255 2014 100 23140 568001 10000 | 21501 0,

r ZZ6 | 2098 (13 18261 75262 7560 120070 | 250 0. 0317}

“Milg ggggg]é &ass%i*ggg% qaaassgq
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APPENDIX B. NORMALIZATION DATA:

BASE CASE
CYCLE #1, PROJECT #1 — CYCLE #1, PROJECT #2
O 85 115 1183 _‘ 50 186 145 1462
40 1835 110 114.6 . 50 186 140 1459
0 185 105 1134 50 186 135 1438
0 185 100 127 % 88 10 1431
N I Y % * 1T 186 251429
40 85 90 112, 50 188 120 1426
| 40 83 8 1133 50 186 118
& 8% 0 1154 50 186 s 1

CYCLE #1, PROJECT 3

M

CYCLE #1, PROJECT #4

& 199 180 180.1 70 219 236 234.1
() 19.9 170 176.9 70 21.9 220 219.6
) 19.9 100 174.4 70 219 210 212.3
o) 199 %isf 1732 70 219 200 . 207.9
60 199 1 173 70 219 190 . 2053
® 199 14 NN e e FE
& 199 140 . 1734 70 219 | 175 ' 2047
99 L 1% 174 219 1 2053
L . - N . |
CYCLE #1, PROJECT #5 CYCLE #2, PROJECT #2
] KDSI 'msv'_guq -
C R R - 242 50 18.3
0 | 23 2% 238.8 50 18.3
0 | 23 220 2376 50 18.3
8 23 | 215 236.6 50 18.3
0 23 210 236.5 50 18.3
% | 23 | 206 B 50 18.3
0 23 | 20 2372 50 18.3 130
23 195 2382
CYCLE #2, PROJECT #1 CYCLE #2, PROJECT #3
qmqﬁ_m%} MM KDSI (est) [ TDEV {est) MM!&Q wgaa"z
3 f ) b 18.6 165.9 165.
0 16.3 100 102.5 60 18.6 150 ;
W0 163 %0 102.2 60 18.6 135
40 16.3 % 101.2 60 18.6 130
[ 163 80 60 18.6 125 ,
% 16.3 75 101.7 60 18.6 120 156.8
0 163 | 70 103.3 60 18.6 110 €14
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CYCLE #2, PROJECT #5 CYCLE #2, PROJECT #4
E : 9 | 9.8 |
80 . 214 200 2393 70 8
80 214 210 2185 70 8 |
0| 214 190 2134 70 8 —
80 214 186 -; 70 198 | 150 | 1845
80 - 214 180 . 2133 70 198 . 140 | 1868
80 214 175 2138 7 ’ |
® ' 214 170 2155 . i 4

70 192 150 1668 60 . 189 130 144.6
70 192 ' 146 1002 80 18.9 125 1435
70 192 140 | 1603 80 189 120 f-
70 192 | 1375 80 189 | 115 1437
70 192 135 169.3 80 188 . 110 1445
70 192 130 170.5 ! .
t T : 1
CYCLE #3, PROJECT #1 CYCLE #3, PROJECT #2
TKDS! tost) TOEV (50 ::Bm@—m ™ Logt) |
18. ! . 9 i ]
40 18.3 80 935 50 169 | 100 | 1178
0 183 | 775 | 936 50169 | 9 _
40 18.3 75 50 | 168 .90 | 1179
0 183|725 94.2 50 169 | 60 | 1208
40 183 70 951 T i
40 18.3 60 98.4 ,r
CYCLE #3, PROJECT #5 CYCLE #4, PROJECT ¥4
Mao ™20, %" ) %@ W%@
80 1 204 200 202.7 70 194 160 1628
80 20.4 180 197.8 70 194 140 158.8
80 204 170 195.6 70 194 135 157.9
80 . 204 167.5  ERBGH 70 194 125 M
80 204 165 1954 70 194 130 157.5
80__ | 204 1625 19 70 19.4 125 156.4
80 204 160 196.6 70 19.4 120 159.8
80 20.4 130 2027




CYCLE #4, PROJECT #1

CYCLE #4, PROJECT #5

) 164 70 86.9 80 19.8 170 1854
20 164 675 86.5 80 9.8 160 182.9
40 164 & 80 198 1575 | 1823
40 164 60 886 80 19.6 155
40 164 50 4.6 80 19.8 150 1823
80 19.8 145 183.3
80 19.8 140 184.3
80 8.8 136 186.7
CYCLE #4, PROJECT #2 CYCLE #4, PROJECT #3
—Lu%lﬁl.%ﬁy-—% Y] D ﬁ%
2 786 1385 1 1
50 187 100 1118 60 176 115 1338
50 187 95 110.6 60 76 110 1332
50 18.7 90 0 7.6 1075
50 187 8 110.9 60 176 105 1332
50 187 80 1131 60 7.6 100 1337
- 60 176 85 141.3
' i
il
CYCLE #5, PROJECT #5 CYCLE #5, PROJECT #4
80 19.9 185 | 1843 70 18.3 130 149.3
80 189 155 173.6 70 18.3 120
[® 199 145 1718 70 18.3 10| 1487
80 199 | 1425 f
80 199 140 171.8
80 19.9 130 1744

g

%0 169 100 | 1081 60 19.1 120 | 1289
50 169 % | 1048 60 19.1 110 | 1288
= 169 3 103.7 60 19.1 105 I
50 165 80 80 191 100 1262
50 169 75| 1038 80 191 % 128
50 169 70| 1068 60 194 % 1301

80 191 80 124

b +— 14
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CYCLE #5, PROJECT #1

DS1 {est) [TDEV (ost] | MM (est) | MM “acti
70 )
65

40 825

40 15.5 815

40 15.5 62.5 81

40 16.5 60

40 15.5 5 | 829

40 15.5 50 ;864
i




APPENDIX C. NORMALIZATION CALIBRATION STRATEGY:
BASE CASE

- CYCLE &2 (Norwalized Dete) i
E"‘Sﬂ 8 12 | 14 ——— 3 T " —]
et BT 214 I —
7 S——— - S %5 — r
P R | Mg g SRS T
i . me Ea EEmE i aEc
S -7 - T fw:%:ﬁi:m b K oS
: cvcltsﬂou—-um 1 1| 1;; “1]
1 EE T ' /
®__ | 0 1 183 —
7:4% 648 -1 oINS RS TS —
- - L o - oy |
— 1 T -+ ——
— ausuuu;-w—. -
I—T . S T
P O W W W] i i
= = mEEE me R £ ==
% jes s TR Tt S ,
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CYCLE #6 (Normaitzed Deds)
mwm li:g:'~mga‘1::.-_;;ldu~;3
[ | 7 10 1903 T 164 |—— — ol 1544 | 182
2 N ? WE ir_rzn 12 1118 163
180 4 | 1 151 1.
18 & __ T“‘a: i 125 851 1 155
. e #% g
70 1567 | 154.4 147 4 & 12841 7580 | 17580 45
50 715 Xl 1114 1 81 36268 ?g"‘w 45 —
] 181 3 74| 9531 45500 26706 50
o w1 1 R AT W15 N N A Y 2 X5
| 1
CYCLE #8 (Normakzed Data)
p %‘1 —® ® T8 - (1032 | 1e:
3 200 | 60 | % | o 34 1305 17 2
[ 200 70 |8 | 35 71, 24 (1765 | 19.
30 B 11 3 170 )
LML R R R e
T
p % 708.4 ¥ ? T WW 8025
130 % . 31501 [
N 147 4 1784 o7 i 7580 | 19070 04
[ 1 i i 130060 | 26070 ) 04T | 0451 ]




et

APPENDIX D. CONVENTIONAL CALIBRATION STRATEGY:
LEARNING - NO UNDERSIZING

CYCLE #% (Rew Duta, 100% DSIPTK, NO UNDERSIZING)

1

Pl DEPTR KRS o) %i
2 X T 166 ——_‘z
0 ® T 78 3 B
[ 700 0 —0 | 307 % ——
BB ) 2
£ W00~ s
j'% 18444 0 5
% 0 [ 670 29070 o
.
1 [ 19
12| A
%ﬂwﬂ
-] .34
11501 .34
5801 :
241 @
1774 17. 174.4 1
1 154 112
146.5 | 16 183 172
—— ———— 4 42‘
& 177 4 74 1208 | 30837 13045 0.34
0T T80 ] ® %0 N 700 1540 6%
2. % 65 | 1432 | Y9070 [
S % T 2w [opa——w ez 070 ' XS
:
CYCLE M (Raw Data, 160% DSIPTK, NO UNDERSIZING)
® 0 % 185 . T4 15.7
: 160 -] ) 5 199 ] 19.7
3 T — i85 5 — r 17
190 B8 (12 4 1832
T leca
P S e
R BT io0 220 T a6 0000 | 19873 )
; 0S| 1 & | 8076 | 52 37| 2608 .
3 %0 [ 38 1 1614 1) ieee T o%16 | 476 ] 20070 | 27 o3 1 o3




CYCLE #5 (Raw Data, 180% DSIPTK. NO UNDERSIZING)

CYCLE #6 (Raw Data. 200% DSIPTK. NO UNDERSIZING)

[P S DT RS U (RIS G W) TV
1

1 3 .
2 200 S0 0 50 122 158
3 200 60 0 60 148 16.7
4 200 70 Q 70 174 17.8
5 200 80 Q 80 200.2 18.7
oL Soral RO facky M feshy - Nacioaty 0% DRy (surn MONac Ol o O SO
40 96. 87. 48 ; 10 4210 &1 304 46
2 50 1222 114 61 6795 11005 _ 321 6025 0.45
3 60 148 135.3 74 10012 21017 5476 11501 044
4 70 174 158.7 87 13894 34911 7569 19070 0.44 .
S 80 200.2 184 6 100 18460 53371 10000 29070 1.84 0.43 0.442
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APPENDIX E. NORMALIZATION CALIBRATION STRATEGY:
LEARNING - NO UNDERSIZING

CYCLE #1 (Normaized Data. 100% DSIPTK, NO UNDERSIZING)) -
TKDS) {act)_Uncer (%)  KDSI (et est et W (acl)_TOEV (act T
1 0 4 0 7184 1 1154 g - T
100 50 0 50 1459 166 1459 779
100 §0 ) 60 1767 79 1783 194 K -
70 0 70 207 8 iE) > 212 207 —
80 [ 86 W/ 246 7 379 —
ot O SUm nom) Sum uctivt
o 112
1459 1455 1424 61 8686 2100 721 6025
1767 178 3 1728 74 12787 26887 476 11501
2078 212 043 87 17774 44661 7569 15070
235 2467 238 160 23650 88311 10000 29070 0334

CYCLE #2 {(Nommaized Data. 120% DSIPTK. NO UNDERSIZING)

o COML_ICT) o act oct
142, 1 14 1
00 L) 713 51 7126 164
0 9 &0 73 7T 1726 A -
86 T 0 T 80 237 1 199 2337 712
70 0 7 2034 188 2631 20

¥ YvE: " . * ] 5 i 80~ 80

T3 1326, 1012 . __48 4858 12660
173 1726 1556 | 74 Ti614 T 24174
2M 12337 2128 T00 21290 | 45464
203420371, 1838 87 . 5090 61463 G347

i
i

: + :
. i L
CYCLE #3 (Normakzed Data. 140% DSIPTK. NO UNDERSIZING))
| (act) T est ) et MM (act acl
; i 13, 1
60 0 T 60 155 4 17 1547 18
40 0 40 1015 14.5 1014 15 8
50 1 [1] .50 128.3 15.8 l———————» 1279 17
80 o8 201 19 2004 203

CYCLE #4 (Normaized Data. 160% DSIPTK. NO UNDERSIZING))

o st = = ac €=
7 - 7

40 0 40 933 14 93 1 154

80 0 ) 1932 1 1927 197

50 0 50 118 1 b 1177 66

€0 0 60 1428 7 7423 77

18220 . 36026 10000~ 19873

4
1
5
2
3

1932 1927 | 1822 190
118 1177 18 61 | 6649 42675 C 37 23884
142.8 1423 1329 74 9835 52510 5476 29070 0421

97




CYCLE 85 (Normaized Oata 180% OSIPTI. NO UNDERSIZING]) 1 —
on ex! WM (ac)

1 ] 1 179 19
4 80 716 [} 70 1567 171 156 1 18

180 ) 0 89 1101 143 1096 1€

80 60 ) 80 1333 16 133 17

180 40 0 T __AD 871 137 1867 15

H 80 i _{4] 179 ¢ 1 | o0 ’ 130 Kl 3}

4 70 1567 156 1 1476 7 12641 . 29571 7568 17569 04

50 1101 1096 1025 59 6253 36224 721 21290 3 4
3 80 1333 133 1244 4 9206 45430 5476, 28766 "7 04 ;

29 871 86 7 807 48 3874 49304 304 29070 17 0 46 G457 |

CYCLE 86 (Normeized Data. 200% DSIPTK. NO UNDERSIZING))
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APPENDIX F. NORMALIZATION DATA
LEARNING - NO UNDERSIZING

r CYCLE #1, PROJECT #1 CYCLE #1, PROJECT #2
KDSI (est) [ TDEV (est), MM (est) MM (act KDS| (est TDEVest MM (est) MM (act)
40 16.5 . 1154 115.3 17.9 1459 146.4
40 '~ 165 110 1142 50 179 | 1% 1441
4 | 165 106 . 114 50 179 125 1431
40 165 100 1129 50 179 120 1426
40 165 95 ' 1128 50 178 115 1424
40 . 165 90 | 1129 50 179 110 | 1431
30 165 85 | 1129 50 17.9 105 | 1435
40~ 165 80 '~ 1136 ‘
T V
: | ! : |
CYCLE #1, PROJECT #3 CYCLE #1, PROJECT #4
KDSI (est) [TDEV (est)! MM (est) | MM (act KDSH {est TDEV est) MM (est) = MM (act
60 | 199 178.3 | 1788 70 20. L 212 212.5
60 . 199 | 155 | 173.2 70 . 207 . 190 205.9
60 . 199 150 173 70 207 180 204.5
60 | 199 145 172.8 70 T 207 175 2043
60 | 19.9 140 173.4 70 1 207 170 2046
60 | 199 135 | 1743 70 . 207 . 165 205.3
: 1 70 207 160 2058
| } t : }
r
J:_ ; . | i i i
} i ; :
CYCLE #1, PROJECT #5 —— CYCLE #2, PROJECT #2
KDSIeeHTDEVat MM (est) | MM (act KDSI (est) [TDEV (est)| MM (est) | MM (act)
80 21.9 | 246/ | 2478 17.7 . 1424 . 1421
80 | 219 20 | 2378 50 1 177 . 130 131.2
80 = 218 215 236.9 50 | 177 | 120 ' 1303
80 21.9 * 210 236.5 50 477 7 115 | 1289
80 219 205 . 2367 5 377 [ 110 . 1282
80 219 . 200 237 50 177 105 | 1282
80 219 195 237.8 50 17.7 1025 @ 1279
80 | 219 | 190 ' 2386 50 7.7 100 | 1285
L L ; 50 177 95
CYCLE #2, PROJECT #1 ———— CYCLE #2, PROJECT #3
'KDSI (est) TDEV (est)| MM (est) | MM (act KDSI (est ‘TDEV est), MM (est) | MM (act
40 164 1126 1122 60 , 189 172.6 1723
40 . 164 100 1029 60 189 = 150 159.4
40 T 164 90 1021 60 189 . 135 = 156
40 164 8 . 1016 60 189 | 1325 155.6
40 16.4 80 1012 60 18.9 130 155.6
40 %4 @ T5 1019 60 i89 ' 1275 1556
40 164 70 - 1035 60 189 | 125 155.6
. 60 | 189 126 1571
80 189 110 1619
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T
_L

CYCLE #2, PROJECT #5 CYCLE #2, PROJECT #4
'KDS! (est TDEV(estNMM;est) MM (act KDS! (est) TDEV (est) MM (est] . MM (act
12 | 7 .9 1 X -
80 212 7 210 2185 70 201 180 188.3
80 | 212 | 180 . 2136 70 20.1 160 - 1844
80 | 212 | 185 = 213 70 20.1 155 183.9
80 | 212 | 180 2129 70 . 201 150 184.5
80 | 212 . 1715 2135 70 201 145 185.6
80 ' 212 . 115 2134
80 | 212 . 170 T 2153
i x
CYCLE #3, PROJECT #4 CYCLE #3, PROJECT #3
KDS! | TDEV (est)| MM (est) ' MM (act KDSI (est) | TDEV (est)! MM (est) | MM (act)
70 . 19.3 | 1821 : 1816 60 182 . 1547 1542
70 . 193 160 1726 60 182 | i35 | 1464
70 19.3 | 145 . 1691 60 | 182 125 | 1438
70 19.3° | 1425 | 1688 60 | 182 120 . 1428
70 | 193 T 140 | 1691 60 | 182 115 | 1429
70 193 | 135 1697 60 | 182 110 . 144
70 193 | 130 ; 1708 60 ; 182 | 105 | 1456
1 z i
f 1 .
CYCLE #3, PROJECT #1 CYCLE #3, PROJECT #2
[KDS! (est) | TOEV (est)| MM (est) | MM (act T(est) [TOEV (eS| MM (est) | MM (act
40 158 : 1014 101.1 50 17.1 1279 1274
46 | 158 | 90 | 944 50 17.1 100 118.1
40 158 80 934 50 171 95 | 1175
40 158 | 75 | 931 50 174 7 925 T 1171
40 158 | 70 | 927 50 174 1 80 | 1179
40 | 158 65 | 939 50 174 | 8 1198
40 | 158 60 | 97 50 174 1T 80 | 1224
: | i %
! ] 1 ' 1 1
| —
CYCLE #3, PROJECT #5 CYCLE #4, PROJECT #4
KDS! (est) [ TDEV (est)| MM (est) ' MM (act)
. ‘ 4 | 208. 70 18.7 675 | 167.
80 203 | 180 197.9 70 187 | 150 ' 1616
80 203 | 170 195.7 70 187 | 135 . 1578
80 |, 203 | 1675 | 1957 70 187 | 1325 157.4
80 203 | 1865 | 1956 70 . 187 130 157
80 203 | 160 | 1961 70 . 187 | 1275 . 1573
80 ' 203 | 155 | 1973 70 | 187 ' 125 1515
80 . 203 | 150 . 1992 : .
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CYCLE #4. PROJECT #1 CYCLE #4, PROJECT #
~ f— ——

KUST (est] TOUEV {est] MM (est] MM {act] N KDS! (est) TDEV MM (est) MM (act

|40 154 8 8 1 ] s T 197 70 1855

a0 154 75 [ XN | 80 197 © T 160 1831 |

|40 154 70 85 | ] 80 o197 15 T 1822

_ % 154 6 - 84 | | s | 197 © 450 [ a82f

40 154 60 869 | ] 80 197 0 145 1829 |

T Y T e0 A7 1a0 T eA7

G - _ —- _WM_‘F“ e e ]

CYCLE #4, PROJECT #2 CYCLE #4, PROQJECT #3

(KOS (est) TDEV (65 MM (es) MM (ac) | [KD3I (est] TDEV (es] MM [est) WM (acd
50 16.6 117.7 1174 60 17.7 1423 142
50 16.6 100 112.3 60 17.7 120 135.3
50 16.6 90 109.8 60 17.7 110 133
50 16.6 87.5 109.4 60 177 T 1075 133
50 16.6 85 109 60 17.7 105 1329
50 16.6 825 109.7 - 60 17.7 102.5 1334
50 16.6 80 109.9 60 17.7 N 100 134

60 17.7 : 80 142.2
: ; L ! f { ;
‘ | ‘ { ‘ : ! i
CYCLE #5, PROJECT #4
KDS! (est) [TOEV (est)_ MM (est) | MM (act) |
70 T 183 | 1561 | 1556
' 70 | 183 | 140 | 1514
] 700 . 183 125 . 1485
i 70 o 18.2 120 . 147.6
JT 70 183 115 I 148.6
! ' -
| -
{ —
T :
IT ! ' I
: i i ! | | ‘
CYCLE #5, PROJECT #2 CYCLE #5, PROJECT #3

S e~ —— sas— —

KDS! ‘est! [TDEV ‘estf MM ‘esq . MM (act KDS! (est) ! TDEV esq MM !estz . MM ‘actz
50 i 16.2 1096 . 109.1 60 ¢ 17.3 133 . 1326
50 i 16.2 | 90 ¢ 104.6 60 f17.3 i 120 . 1293
50 16.2 i 85 . 103.5 60 i 17.3 110 126.6
50 16.2 80 102.5 60 173 105 126
50 16.2 75 103.3 60 , 173 100 125.1
50 16.2 70 105.5 60 . 173 97.5 ' 1244

60 173 95 125.1
C —
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CYCLE #5. PROJECT #1

8l

porT
|
i
i

&8
g

|

T T
818
3
[

t

g

|
!
i
|

i

'8

|
-"—.‘d
|3 i
|-
Coo

o

1!

fon!

|

|

‘o
T ]

T
b

834 |

816
81
80.7

808
822
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APPENDIX G. CONVENTIONAL CALIBRATION STRATEGY:
UNDERSIZING - NO LEARNING

: CYCLE #1(Rew Dats) [
F———» . ; -
_ 407 186 | _
k X 878 19.9
1 } ! 8 219
S W ® W R oa ey by 23
Producivity]
<
2 50 480 1407 81 912 1408 321 025 03
7 1876 0 1 k 17 5476 11501 0.
1 70 2078 M5t 87 71385 SO0 7569 19070 - 2
5 80 262 100 24230 7 0000 70 256 . 033 0.317

T Y G S A
R R S

—%
E.!E [Bci) | W (est) | WKscl)
0 i 35, : o0, A
O I\ T 157
60 1885 : 1846
w 1
70

216 | 2774 | g

3 T 100 60 «_

1 100 | 4 50

2__ 100 10

5 | ‘I_Q a )

3 60 201 198.6

i & TT1313 1248 .

2 50 166 156 61 9516 49455 fral 19070 0.32

5 2719 | 27131 100 27310 76765 10000__| 29070 264 0.2 0308 |

H ]

|
.

CYCLE #4 (Raw Data, 100% DSIPTK, With Underestiration)

F m [ KDST {act) | KUSI (@s?) W TV (@8t K
L) gg 0 % . ! 3 ~— A :
1 100 40 30 28 873 | 13.7 119.1 173 j !
5 100 80 54 B ! '
Y4 1_& % |
3 100 60 ]
0 —
LI SN LG
2 L | ! '
40 127 1191 . 48 5717 26788 2304 9873 034 |
80 " 2629 | 2574 100 . 25740 | 52528 10000 - 19673 031
p 50 "~ 160.5 | 165 | 61 | 10065 ' 62593 3721 | 23594 | 03 |
60 1944 1815 74 . 13431 76024 . 5476 . 29070 ' 262 | 033 0311
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CYCLE #5 (Rew Dats. 100% DSIPTK, With Underestimeton) -
i ; X , ” —
) 700 70 10 ) 208.1 18, 214 05
o] 50 D T % 100s 14 1534 184
100 80 50 30 n2 14 05 203
00T & 0 X w7 143 ——»] 1176 165
0 i D68 314 BT B T 4T e 1T 0.3
2 0 .3 | 1534 61 o357 655 32 | 21290 0.33
&0 TR . W55 74 15080 ' TIeA4  S5ATS %766 _ 0
) 1 L JITE T8 SeaS 770 234 20070 266 034 0308 |
CYCLE #6 (Raw Data, 100% DSIPTK, With Underestimation)
70 50T 20 40 28 158 —1 1504 18
) [T ) & 1347 16.1 1 194
4 100 70 . 50 3S 112 15 252.9 211
i ; 72 ) ]
o sum U7 " Toelcient Producivity] Commp Prod]
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APPENDIX H. NORMALIZATION CALIBRATION STRATEGY:
UNDERSIZING - NO LEARNING

CYCLE #1 (Raw Duate. 100% OSPTX. Wih Underastmalion) 1
JOLDAFEY URIFTR () | KUY fac | Uity () | KIS (o) | SN (ogh} | TUREV gaakl
I . y 0 M 2.4 2 4 o
] &0 1184 152 K X
1218 152 W76 10
L . N - AR 4.4 Y 3

v

R S E—r e E——

' ‘ ; ; 17
_SA1 204 1530 .33
F R 4 : [ [ 7] 4 3721 1 034
X s : [ foe T 2o 2% 03 036 |
H i I ; -
! S —— i ; ? ‘ !
CYCLE 84 (Normailzad Dute, 100% DSIPTK, Wi Underestimation) -} : . —
T
1 0 % | » 2 1.7 13.1 119718 "
00 | ®s__ 2  M 1 182 2506 22 : :
4 T %N | xn_ B [) 125 1305 . 204 B i
et 80 10 54 | 1549 7 | 1783 _T93 .
T - - — | T |
i B . 2
7 ) 13 | 119 112 @510 22%7 2304 9873 033
30 2341 208 | 2% 700 23830 46797 10000119873 o
F 30 Q29 19035 | 142 61 9680 5477 371 23504 1031 ]
3__ 1 8 i3 89| 1728 74 12796 | eRDT2 - SAT8 [ 39070 | 235 | 034 03i9
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CYCLE #S (Normaiized Deta, 100% DSIPTK. Wilh Underestsration) k‘ e e e

Proj Sergl | DSIPTK (%) | KDSI {ach) | Under (%) ' KUST {ee) ° MM (esf) [TOEV (es)]
00 0 W 04 e

N 5. ] 18.
Z 100 £ 2 o T 113 151 1485 182
3 100 60 30 Q 119 154 187.3 19.4
4 00| 70 50 3 | 983 143 459 214 -

J00_ 80 10 72 2005 191 > 2415 " 213
) NONact) — MM(nom)
120 ' -
Y 50 142.9 > -
60 73 1871 B
4 70 2034 459 . *
5 80 24141 -
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APPENDIX I. NORMALIZATION DATA:
UNDERSIZING - NO LEARNING

CYCLE #1, PROJECT #1 - CYCLE #1, PROJECT #2
1(est) TOEV (est) MM WM ]  [KDSi{est) TDEV guq MMéesq wgaa)
. 120. . . . .
40 "T85 115 1153 '~ " 1S T 186 | M5 | 1462 |
40 185 101146 156 TTee a0 145.9
40 18.5 105 1134 80 18.6 135 1438
40 18.5 100 1127 50 186 1% 431
40 18.5 95 11286 50 186 125 142.9
40 185 90 1127 - 50 18.6 120 1426 |
40 185 85 1133 50 186 1181425
40 185 80 1154 50 18.6 115 142.6
CYCLE #1, PROJECT #3 CYCLE #1, PROJECT #4
i (est) TDEV (est) MM (est) MM (act KDS! (ect) 1DEV (est)] MM (est) MM (act
60 199 . 180 . 180.1 70 219 . 235 234.1
60 19.9 170 176.9 70 219 220 2196
60 19.9 160 1744 70 219 210 2123
60 r19.9 155 C 1732 70 i 219 200 2079
60 . 199 150 173 70 219 190 2053
60 199 145 | 1128 70 219 185 2044
60 ' 199 140 1734 70 219 175 204.7
60 . 19.9 135 . 1743 701219 170 2053 |
i ' J ] i .
CYCLE #1, PROJECT #5 CYCLE #2, PROJECT #2
KDS! (est) | TOEV (est)] MM (est) MM (act KDS! (est) | TDEV (est)| MM (est) | MM (act
80 23 . 2423 . . T 19. 1553 . 1508
80 223 235 242 50 195 150 1495
80 | 23 | 225 2388 50 195 145 | 1463
80 | 23 | 20 237.6 50 195 140 | 1454
80 | 23 | 215 . 2366 50 195 . 130 1431
80 23 210 2365 50 195 1201424
80 23 205 | 2364 50 195 135, 1426
80 23 | 200 | 2372 50 195 1901431
80 23 195 | 2382 50 195 1001468
CYCLE #2, PROJECT #1 CYCLE #2, PROJECT #3
[KDS! (est) | TDEV (est), MM (est) . MM (act KDSI (est) TDEV (est)| MM (est) . MM (act)
40 1. - 1151 0 1154 - 19.8 T 181, . 184.1
40 A 105 . 1139 60 19.8 175 178.6
0 7 171100 1129 60 19.8 165 1754
0 174 % | 1125 60 198 155 . 1735
40 17193 1128 60 198 145 173.3
o 171 %0 127 60 198 140 1729
40 17 ) 85 1131 60 19.8 - 135 i 1741
! : : 60 19.8 - 130 o 175.1
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CYCLE #2, PROJECT #5 CYCLE #2, PROJECT #4

[KDSI (est) | TOEV (est)|, MM (est) . MM (act TKDSI (est) | TDEV (est) MM (est) MM (act

- 4 K . 4. y
80 234 285 ' 2829 70 211 215 2145
80 234 265 | 264.7 70 211 205 2111
80 234 245 @ 24713 70 211 195 206.8
80 234 225 2388 70 . 211 185 205.2
80 234 215 . 2316 70 211 180 2045
80 234 205 @ 2%W8 70 211 175 . 2042
80 234 200 237.2 70 211 170 204.7
80 234 195 2382 70 211 165 2054

CYCLE #3, PROJECT #4 CYCLE #3, PROJECT #3

JE— e —— e ——

KDSI (est) [TDEV (est): MM (est) | MM (act KDSI (est) TDEV (est) MM (est) : MM (act
70 ‘ 202 21%"‘.1 ! : ) 60 204 = 1926  198.1
70 . 202 . 210 212.3 60 204 . 175 . 1786
70 © 202 0 200 208.7 60 204 = 165 1754
70 202 - 190 ' 208.2 680 204 = 155 = 17135
70 | 202 . 180 | 2044 60 204 = 150 | 1731
70 202 178 | 204.3 60 204 145 = 1733
70 202 = 175 _ 2044 60 204 140, 1734
70 20.2 170 204.7 60 20.4 135 1741
70 202 165 2051 60 204 130 1751

CYCLE #3, PROJECT #1 CYCLE #3, PROJECT #2
p— S ————— — —
KDS| (est) . TDEV (est): MM (est) . MM (act | (est) | est)! MM (est) . MM (act

19.6 | 128 | 1245 T 184 ¢ 1458 | 1559
40 = 196 . 115 . 1153 50 184 140 . 1459
40 19.6 105 . 1135 50 . 184 130 1433
40 196 . 100 = 1129 50 @ 184 . 125 1428
40 196 97 | 1128 50 184 120 1427
40 19.6 95 | 112.7 50 | 184 115 | 1424
40 19.6 90 | 1127 | 50 . 184 110 | 1429
40 19.6 8 | 1135 50 . 184 105 . 1437
40 19.6 80 114.8 50 - 184 100 1455

CYCLE #3, PROJECT #5 CYCLE #4, PROJECT #4

1(est) . o8t ost) | MM (act KDS! (est) . TDEV (est) MM (est) . MM (act
' - ! 5 . 7 : a3 8 | 2331
80 | 223 | 250 | 2493 70 | 214 210 | 2122
80 = 223 230 241 70 . 214 . 200 208
80 223 . 215 | 2372 70 214 190 . 2056
80 223 210 | 236.9 70 214 180 = 2044
80 23 | 205 | 3 70 214 175 | 2044
80 22.3 200 236.8 70 214 ° A70 = 2052
80 23 195 - 2372 70 214 160 . 206.3
80 223 190 238.5 70 214 155 2091
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CYCLE #4, PROJECT #1

CYCLE #4, PROJECT #5

A e v

| (est) TDEV (est) MM (est) MM (act

110 1151

240 2455

40 18 80 222

40 18 105 113.8 | 80 222 20 2377
40 18 100 113 80 222 215 236.7
40 18 95 112.7 80 22 210 236.3
40 18 90 112.7 80 2.2 205 236.4
40 18 85 113.2 80 222 200 237.3
40 18 80 114.8 80 222 195 238.2
40 18 75 118

CYCLE #4, PROJECT #2

CYCLE #4, PROJECT #3

KDSI (est) | TDEV (est): MM (est) | MM (act KDSI {est) ' TDEV (est) MM (est) MM (act
50 T"_)__-L-J—A 1595 159 60 19.8 176. 178.
50 204 . 140 | 1453 60 19.8 160 174.4
50 204 130 | 1429 60 19.8 155 173.8
50 204 | 125 1423 60 198 150 1734 |
50 204 120 1427 60 198 145 1729
50 204 115 1434 60 19.8 140 1735
60 19.8 135 174
60 19.8 130 1754

CYCLE #5, PROJECT #5

CYCLE #5, PROJECT #4

T (est) TOEV (est). MMéosq MM (act]_
70 12 08. 11.

80 . 6 6
80 | 225 260 | 2593 70 212 200 208
80 225 240 | 2455 70 21.2 190 205.7
80 225 220 | 2375 70 212 180 204.6
80 = 25 215 237 70 212 175 | 043 |
80 @ 225 210 | 26 70 212 170 . 205
80 . 225 205 | 236.8 70 21.2 165 205.7
80 . 225 200 | 2371
CYCLE #5, PROJECT #2 CYCLE #5, PROJECT #3
[KDST (est) [TDEV (est) MM (es) MM (act I (est) TDEV (esf) MM (est) MM (act
50 19 151.5 1. 198.6 . 1
50 19 140 = 1454 60 212 180 . 180.2
50 19 130 | 143.2 60 21.2 160 173.8
50 . 19 125 . 1425 60 212 155 173.3
50 19 120 1426 60 212 150 172.8
50 19 115 142.5 60 21.2 145 173.6
50 19 110 143.1 60 212 140 174.4
- 50 19 105 1445 60 21.2 135 175
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CYCLE #5, PROJECT #1
40 17.5 110 1147
40 175 105 1135
40 175 " 100 113
40 175 % - ARS
40 175 90 1126
40 175 85 13
40 175 80 114.4
40~ 175 70 119.7
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APPENDIX J. CONVENTIONAL CALIBRATION STRATEGY:
UNDERSIZING - 75% DSIPTK

CYCLE #1(Raw Dsta. 75% DSIPTK. With Underestimation) | S —
act) | " st @st) | TOEV act act - B
2 75 %0 20 © 1154 152 18132 209
3 75 &0 0 2 1215 155 2156 24
4 75 70 50 35 1003 144 307 ¢ 249
5 75 #0 10 72 214 192 2808 251
y act) | WA (s0) act Q ‘sum MIVKact T sum
1 1154 .7 ‘ )
21 50 | 1459 1812 1 11063 17968 A 6025 028
3 . 680 | 1167 2218 74 16413 4412 5476 11501 027
4T 70 T 2018 3018 87 26779 61191 7560 19010 [¥x)
5 80 1 2% 708 100 26080 | 90171 10000 20070 31 0.28 0.262 |
i
CYCLE #2 (Raw Data, 75% DSIPTK, With Underestimation)
ach) T Unoer (%) | KDS! (est et @st TOEV (act
i : ! 14 j 14. 187. .
1 75 ) 10 3% 135 16.1 1381 176
375 80 . 20 |48 1906 | 18 220.7 208
5 75 8. S50 . 40 1491 | 6. 370.4 23.9
a 75 70 0 B 1845 182 272.7 F7¥]
p. i 50 H B8, } 87 13 b3
1 40 1491 1381 | 48 6629 18060 2304 6025 0.29
3 T 60 2283 207 | 14 16332 I | 5476 11501 027
5 80 . 087 3704 | 100, 37040 . 71432 | 10000 . 21501 T 02,
4 TO__ 284 | 2127 81 | 075 5157 7568 2907 327 02%6 ' 0252
i i i : ' : :
T ; | ¥ y : T =t T
CYCLE #3 (Raw Data. 75% DSPTK. With Underestimation) I S
i (@st] . TIDEV.
1 75 . ; ! .5 ¥ i .
3 715 . 60 . 4 . % 1408 | 164 2354 207
T 75 4T &8 2 76 13 1481 192
2 75 1 50 1045 78, 119 1831 19.
5 75 1 B0 . 30 5 _ 2239 . 195 IB5 2
E‘-EI‘ BST (act) | MM { R ) R ML e AL o e e T T B ¥ficont [Producirvity| Comp Prod]
. 283, T 200.8 . 8 T 23%25 e3125 _ 7 oH i g 1 %
3 60 2408 | 2354 74| 17420 40545 5476 13045 | — T 025 |
1 40 1573 148.1 48 109 47654 204 15349 027
2 50 196.8 | 1831 61 11169 58823 3721, 19070 027
S 80

T ®s7 235 100 3% . oiir3 10000 29070 3% 025 036

Prod]
028
026
0.2
0.28 0262
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CYCLE #5 (Raw Data, 75% OSIPTK. With Underestimation)

B0 8 Pa——
4 75 70 10 63 241 201 2643 208
2 75 50 0 3B 130 15.9 1846 = 182
3 75 60 50 o) 110.6 149 2434 202
1 75 40 2 2 3183 153 149.1 16.7
80 3.7 3 70 4
4 70 2692 264.3 87 22904 57264 7569 17569 0.26
2 50 1881 184.6 61 11261 68525 Kzl 21290 0z
3 60 p7::) 2434 74 18012 86537 5476 26766 T 025
1 40 1496 1491 48 7957 ' 93684 2304 29670 32 027 0.253
A — L. 2
3
CYCLE #6 (Raw Data, 75% DSIPTK, With Underestimation) .
' T (act) . Under (%) | i (ast) | MM (est) | TDEV (est MM (act) TDEV (act
1 5 4 . 1 145.7 18.
2 75 50 20 40 . 1549 17 178.7 19.1
3 75 60 30 42 163 173 216 206 —
[ 75 0 ' S0 3’5 146 161 208 4 23 _
5 75 80 10 . 12 871 215 »{ 3009 237
[Prof Sedal [ RG5! C—D' v c:;uucacz)mm- Q y P
' 0 4.9 5. i 13 D DU : 60Y4 X &
2 50 1958 @ 178.7 61 10801 17895 3121 6025 028 ]
3 60 2371 216 74 16842 34737 5476 11501 0.26
4 70 2787 | 2084 87 | 25061 60698 7568 19070 023
5 80 307 3009 100 . 30090 90788 10000 23070 312 027 0.261
A “




APPENDIX K. NORMALIZATION CALIBRATION STRATEGY:
UNDERSIZING - 75% DSIPTK

CYCLE #1 (Raw Data, 75% DSIPTX. With Underestimation) r
i > 1 t £ . 4 .
2 75 50 N 20 | 40 | 1154 152 181.2 , X8 s
3 75 60 ' 0 : 42 R AE 15.5 221 | X
[ 75 I 35 100. 14.4 307, 249 ‘
5 75 B 10 2 24 197 3808 7 ™~

|
E
;ﬁ

3 nTTTT® 20 % 249 157 258 7 — ;
| _ ™ 4 | 50 2 674 12.4 150 204 . i X
7 » T % 10 ; ' | i
s~ 8 A X ‘ : :
80 30 ‘ ! _
m
RN 1 : A z : i i 3
3 e 32135 | 28 [ 2027 T4 {5740 | 37609 5476 13045 025
T 195 1150 1372 T a8 | 6586 a5 200415548 027
7 % T ifea 1183 742 T 61 10626 | 5491 3121 | 19070 )
3 o 288 [ 349 e | V0 [ o0 | sup | Towo  om | 79 Aroz_s oz
! I : It - T
CYCLE 84 (Normalized Dats, 75% DSIPTK. With Underestimation) } ;
< 7S g —% 3 . 165 E —27 !
1 T35 40T 30 78 859 | 142 W24 |88 ‘ ‘
5T T 1T 0 T % 1 84 1 285 . 187 312 202 + !
2 5T S5 |50 25 | 852 | 135 942 1 213 X
3 75 e 1 0 54 112 ihe 245 214 i
T R T s e g P
: D 7 | L i 0,
% 1395 | 1424 1373 1 48 | €590 | 2540 2304 9613 028
a0 2688 312 2946 100 20460 58000 10000 19673 0%
% 1763 1942 1743 . 61 | i06x | 6w | 3721 | 2384 0%
60 2135 25 224 | 74 11518 80 5476 T 29670 . 38 028 1 0261 ]
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APPENDIX L. NORMALIZATION DATA:

UNDERSIZING - 75% DSIPTK
CYCLE #1, PROJECT #1 CYCLE #1, PROJECT #2
o KDS! (est) | TDEV (es1)] MM (est) | MM (act
30 _E(Té")' "TLJ"'_#'E'LH 12 | 180.
0 50 209 | 170 174.6
a0 50 20.9 160 | 1748
40 T 20.2 120 138.9
i s
3 r I
i | | i
i 1 {
CYCLE #1, PROJECT #3 CYCLE #1, PROJECT #4
ST (o [TDEY (et o o T KOS Tos [TOEY oV fest | WA o
4 1.8 1.1 24. : 1
60 24 210 2125 70 24.9 300 292.1
60 | 224 208 2128 70 243 290 2658
60 | 24 | 205 2125 70 249 280 278.2
60 | 224 | 200 212.8 70 24.9 270 2689 |
; ; 70 24.9 260 259.4
i L 70 249 - 250 [ . 2514 .
i ! 70 249 | 245 2514
70 249 | 240 252
CYCLE #1, PROJECT #5 CYCLE #2, PROJECT #2
T —— T paryeerg —————
KDS! (est) [TDEV (est)| MM (est) | MM (act KDS! (est) [ TDEV (est)| MM (est) | MM (act
_55""")7.1 ""2'5&.8""" 2 "'E'é_!' —'ﬁT)“ A _188'%)-
80 25.1 265 298.7 50 206 | 180 179.6
80 251 255 300.4 50 206 | 170 174.6
80 251 245 298.4 50 206 | 165 174.5
80 25.1 230 290.4 50 20.6 163 TR
80 251 25 | 285 - 50 206 | 160 1745
80 251 220 289.1 T
80 25.1 215 290.9 T
80 251 210 202.6 ;
— | <
CYCLE #2, PROJECT #1 CYCLE #2, PROJECT #3
“W i A e ————
KDSI (est) | TDEV (est)| MM (est) | MM (act KDS! (est) | TDEV (est). MM (est) | MM (act
40 8.1 | 137 137, 213 220 10.8
40 18.1 135 137.5 60 | 213 . 205 2128
40 181 130 1371 60 | 213 | 200 |23
40 181 128 137.2 60 | 213 | 195 212.9
20 | 181 125 B R 60 | 213 190 2138
30 | 184 | 120 1375 60 @ 213 180 217
H . 1
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CYCLE #2, PROJECT #5

CYCLE #2, PROJECT #4

KDSI (est) [ TDEV (est)| MM (est) | MM (act KDS! (est) ! TDEV (est) MM (est] = MM (act
80 . 3710.7 70 22, . 205 | 271389
80 246 | 350 | 3426 70 228 265 = 2644
80 ' 246 ' 330 = 3277 70 228 255 | 2544
80 | 246 | 310 . 3092 70 228 245 252.8
80 | 246 | 200 | 2953 70 228 240 | 2527
80 , 246 | 285 | 295 70 228 235 | 2524
80 246 | 280 | 2946 70 228 230 2536
80 246 | 270 = 29658 70 28 ' 225 2554

CYCLE #3, PROJECT #4

CYCLE #3, PROJECT #3

[KDS! fest) ‘TDEV (est)| MM (est) | MM (act KDS! {est) "TDEV (est). MM (est) | MM (act:
70 22.8 264.9 264.3 60 | 217 . 2358 2347
70 228 | 245 | 2528 60 217 | 220 | 2195
70 28 | 240 @ 2527 60 | 217 | 210 | 2128
70 28 | 23 2524 80 | 297 | 206 2128
70 228 | 230 253.6 60 1 217 1 200 | 2T
70 28 | 225 - 2554 60 | 217 - 185 | 213
70 28 | 20 | 2567 60 | 217 | 180 . 2142

) 60 L 217 i 180 2168
J; H
. — (

CYCLE #3, PROJECT #1

CYCLE #3, PROJECT #2

[KDS! {est) TDEV (est)’ MM esth MM (act) KDSI Sesq'ETDEV est)] MM (est) | MM (act) |
40 204 | 150 1496 50 197 | 1753 | 1749
40 204 | 135 1375 50 197 | 170 174.5

40 204 130 1372 50 197 165 1742
40 204 . 125 1377 50 . 197 160 174.4
40 204 120 | 1391 50 | 197 155 175

o : ! 50 | 197 | 150 176.7
‘ |
- : N I !
. | 1 L
| 1 | § s

CYCLE #3, PROJECT #5

CYCLE #4, PROJECT #4

RIS (est] TOEV est) | act KDSI (est) | TDEV (est), MM (est) . MM (act
80  24.1 324.9 3237 70 T 227 ' 2852 ' 2798
80 241 300 | 2995 70 | 227 260 259.6
30 24.1 285 | 2955 70 . 227 . 245 252.4

[ 80 24.1 280 | 2951 70 227 240 | 2523
80 241 275 2955 70 227 235 252.6
80 24.1 270 29741 70 i 227 230 . 2538
80 241 265 298.5 70 - 227 225 255.7
80 241 260 299.7 70 L 227 220 257.2
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CYCLE #4, PROJECT #1

CYCLE #4, PROJECT #5

KDSI {est) . TDEV {(est)| MM (est) .MM (act)
80 42 | 12 11.1

KDSi {est} . TDEV (est)| MM (est} | MM (act
4 . 188 | 1424

1373

40 . 188 | 135 80 24.2 290 2952
40 ~ 188 | 1325 1374 80 242 285 295

40 188 ' 130 137.3 80 24.2 280 29486
40 188 @ 125 1374 80 24.2 275 2957
40 188 | 120 138.3 80 24.2 270 296.9

! !

1 : !

. ! e

CYCLE #4, PROJECT #2

CYCLE #4, PROJECT #3

[KDS (est) | TDEV (est)] MM (est) | MM (act

KDS! (est) | IDEV est)] MM (est) MM (act) |

50 21,3 194.2 1911 60 | 214 ' 2145 | 2155
50 213 . 180 179.6 60 | 214 | 210 . 2128
50 | 213 . 175 174.6 60 . 214 | 2075 . 2128
50 ' 213 T 170 1743 60 214 205 | 2124
50 . 213 | 165 1745 60 i 214 T 200 | 2127
50 . 213 | 160 174.8 60 ' 214 . 195 | 213
50 | 213 | 155 ' 1764 60 - 214 | 180 | 2142
56 213 1 150 178.2 60 214 . 185 | 2161

, - 60 214 180 ' 2168

f ] i

CYCLE #5, PROJECT #5

CYCLE #5, PROJECT #4

|LKDSI Zesti TDEV (est)] MM (est) | MM (act KDSI {est) ' TDEV (est)| MM (est) | MM (act) |

80 T 239 3392 | 33716 70 231 ! 2567 | 2569
80 239 | 320 | 319 70 23.1 240 2532
80 = 239 | 300 = 2997 70 231 235 2529
80 i 239 | 285 | 296 70 231 230 253.6
80 236 2825 : 296.2 70 231 275 2552
80 | 239 280 296.3 70 23.1 220 256.4
80 | 239 275 296.4 \ |

80 . 239 270 297.4 ' i

80 239 260 300 !

A | |

i .

CYCLE #5, PROJECT #2

CYCLE #5, PROJECT #3

[KDSI (est) | TDEV (est), MM (est) | MM (act KDS! (est) [TDEV (est). MM (est) | MM (act)
__"')'"_2?‘_)‘"_50 2 1a33‘.1 182.6 60 222 | 2415 239.4
50 | 202 | 170 | 1749 60 | 222 | 220 2194
50 | 202 165 | 174.7 60 . 222 205 | 2128
50 . 202 | 160 | 1744 60 22 . 200 212.6
50 | 202 | 156 175 60 222 | 195 | 213
50 202 | 150 | 1768 60 22 | 190 | 2142
: i 1 60 222 | 185 215.7

60 . 222 | 180 . 216.9




CYCLE #5, PROJECT #1

KDSIo‘ea}

1371

Lo ST TRy
18.4 _ . 8

-
40 16.3 130 |
40 16.3 1275 | 1372
40 ‘163 125 1371
40 - 163 120 1375
40 16.3 115 139
40 16.3 110 139.8
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APPENDIX M. CONVENTIONAL CALIBRATION STRATEGY:
UNDERSIZING - 125% DSIPTK

CYCLE #1(Raw Data, 125% DSIPTK, With Underestimation)

CYCLE #2 (Raw Deta, 125% DSIPTK, With Underestimation) T R
) el ol [ TOEV ok

5 1 2 18.
i 125 © 10 % 1016 A 108.5 163 :
3 125 60 2 48 1315 | 162 1642 18.3 ! i
5 35 ® %0 0 35 15.1 280. 212 i ~
4 125 79 0 49 1408 164 > 2004 185 \ !
. |t .. 4 | ! ! !’!‘

40 1132 108, © 208 13760 | 2504 6025 037

60 173. 1644 { 74 12151 25911 5476 11501 0.37 i

& 25 2807 | 100 | 28070 | 53981 10000 | 21501 020

2043 20487 17600 71590 75001 28070 | 246 035 ' 03%

% Y. + i
1 125 40 0| 28 734 128 104.6 16.9 T i
5 125 80 20 ' o4 1749 | 17.8 2284 209 I |
2 i2% | 50 525 65.2 12 146.7 194 ' '
3 125 60 10 54 1463 . 166 » 1576 185 T |
@@w [N (est) | Q v
3 ._@Lru‘_ 7 %ﬂ'
1 40 106.8 48 M 0.38
80 211 74 ! 0.35 |
50 135 G . 49838 3ia 034
60 1635 1 1576 | TA | 11662 61500 | 5476 | 24546 251 1 038 | 0351
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CYCLE #5 (Rew Dsta. 125% DSIPTK, With Underestimation)

120

4
2
3 " !
1 ' 1
E 5;1
4 : X v 0.34
4 034
3 0.33
035 ' 0733
1 i |
' | |
i 1 I ! | i
CYCLE #6 (Raw Deta, 125% DSIPTK, With Underestimation)
Under TOEV
i | b . . N
2 125 50 20 | 40 115 15.2 137.7 17.4 *
3 125 []] 0 @ 21 15 1688 18.4 : :
4 125 ) % | % 99 | 144 2313 204 i j
5 15 10 72 137 19, 203 ‘ »
—— e ey
[e] Sum mw
Lesstcoms o = .
p 50 1453 137.7 1 13646 Eiral 625 T 0%
60 176 1688 74 12401 28137 5476 11504 . 03 .
4 70 2069 213 87 AN23 | 46280 7569 13070 D3 |
5 80 =8 100 22300, 68560 | 0000 | 20070 238 0.36 | 0345




APPENDIX N. NORMALIZATION CALIBRATION STRATEGY:
UNDERSIZING - 125% DSIPTK

CYCLE #1 (Raw Data. 125% DSIPTK, Wth Underestimation)

Jid L4

'y ¥ ! 0B
S0 1458 - 1382

707 0% T 0044
———

i .
144
156
T 138.5 1 100. ‘ 37} 12371
60 | 2121 | 1641 . 1523 | 74 11270 23641
80 | 2868 | 273 ' 2086 ' 100 20860 44501
[ 70 ' 2493 | 1993 | 180 87 15660 60161
ST — L
i !
! | 1 i ; I
i ! | ;

m act] [@E@_ﬁ}a =) Wf%' "WE]
K 164 > E :
3 125 ) 4Q 3% 0.1 138 1725 1 197 ‘_ :
- © 50 20 481 109 109 [ 191 : :
215 50 10 45 127 15, 287 177 :
5 25 %0 30 56 4138 164 243 21 :
|
3 80 1824 | 125 | 1524 74 11278 26029 | 5476 | 13045 0.35
1 @« € 109 9.6 74 7370 34299 5416 | 18521 037
2 50 1255 | 1287 | 1249 51 7610 GO 7 L -2 035 |~
5 80 2062 2342 | 2081 100 20610 62728 | 10000 | 32242 155 034 0350
- N i ; : — ;
L 1 ) 5 ) . L i ;
v ; ' : B i i . j .
CYCLE #4 (Normalized Data, 125% DSIPTI. Wih Underestimation) + ‘T
O T RO = CHmALACS —
a1 N ANRIREL X = ,
L 4 30 28 645 | 122 1052 | 176 7 : )
5 L 12% 80 % 64 1536 [ 2194 | 1. :
Z_ T i %0 60 | 25 573 | 118 1387 2. ! ;
3__ 125 [ 10158 1T 185 158 > 1548 183 :
i

N AT

a5 2049 73504 0673 038
RS- i 5476 15349 %

0

®

50| 1186 | 1367 | 1259 o 7680 43501 9721, 19070 . 0%

B0 | 436 | 1548 1521 | 74 11265 1 s47se [—Sere T 7usas 223 039 0364 ]

il
e
m%
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APPENDIX O. NORMALIZATION DATA:
UNDERSIZING - 125% DSIPTK

CYCLE #1, PROJECT #1

CYCLE #1, PROJECT #2

A——

!

1 (est est). MM [est) | MM (act KDS| (est) TDEV (est) MM (est) = MM (act
7.1 1085 | 1004 fﬁ‘_L_T'(_LTéTJ"_%_L1 4 138, 137.8
40 71 . 105 | 1046 50 7.4 130 129.6
40 171 103 1026 50 17.4 120 128.4
40 174 00 10 50 174 115 127.2
20 171 | 98 | 1006 50 174 110 1259
40 71 85 1013 50 1 174 105 125
— ‘ 50 . 174 100 | 125
- 50 . 174 98 125.2
M 50 | 174 95 1258
| . ‘ ! :
. N i | |

CYCLE #1, PROJECT #3

CYCLE #1, PROJECT #4

KDS! (esf) | TDEY (es). MM (est) MM (act KDSI (est) | TOEV (est)] MM (est) | MM (act
0 184 '—e%"'}1 168, 203 ’_56"')_5%2 9 .
80 .4 150 1558 70 203 | 200 | 1994
60 184 1 130 | 1523 70 203 180 1858
60 184 | 128 | 1524 70 . 203 175 | 1843
50 184 | 125 | 1518 70 . 203 170 | 182.7
60 184 | 123 | 152 70 203 . 165 | 1814
60 184 | 120 | 1526 70 203 160 180.3
60 184 115 153.6 70 7 203 150 | 1802

! 70 203 145 | 1807

| .

H

CYCLE #1, PROJECT #5

CYCLE #2, PROJECT #2

i |

#
KDS| (est) [ TDEV (est)| MM (est) | MM (act KDSI (est) | TDEV (est)! MM (est) | MM (act
! . 4.1 | 3.5 50 18.9 140.1 139.9
80 . 205 190 | 2094 50 18.9 130 129.8
80 | 205 180 . 208.3 50 189 | 120 128.4
80 | 205 178 | 2082 50 189 | 115 | 126.5
80 . 20.5 175 208.3 50 | 189 110 | 125.7
80 20.5 170 | 209 50 189 105 | 1253
80 20.5 165 200.7 5 | 189 | 100 125.6
80 20.5 150 | 214 50 189 95 1271
] | f
_ ! \ i H |
{ R

CYCLE #2, PROJECT #1

CYCLE #2, PROJECT #3

KDSI (est) | TDEV (est)| MM (est) | MM (act T{es) TDEV (es)| MM (es0) | MM (ach |
70 ++1 3 T 100.1 100.9 60 191 164""IL_LJ'1.1 1635
20 163 | 90 | 1003 60 191 140 1538
20 163 | 80 987 60 1 191 130 152.4
40 163 75 %5 60 194 125 152.3
40 16.3 70 1005 60 191 120 153.2

! 60 19.1 110 | 1516

f
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CYCLE #2. PROJECT #5

CYCLE #2, PROJECT #4

KDSIest'TDEV&st MM (est) MM (act

KDSI‘esQrTDEV!esq MM‘esq MM (act

1 3
248 1 70 201 170 1828
ao gz.z ) 230 - 2292 70 20.1 160 180.5
80 22 210 2158 70 L2041 155 | 480
80 22 190 208.2 70 20.1 150 180
80 2.2 180 . 2088 70 201 145 180.5
80 22 170 2104 70 201 130 185.3

CYCLE #3, PROJECT #4

CYCLE #3, PROJECT #3

KDS! (est) | TDEV (est) MM (est) . MM (act

KDSI (est) | TDEV (est)| MM (est) . MM (act

70 . 1941 1919 | 1913 60 19.7 C 1725 1722
70 Tﬁ 191 | 180 . 184.6 60 19.7 160 169.7
70 191 170 - 1829 60 18.7 ‘ 150 157.2
70 T 191 . 160 . 1804 60 19.7 ' 140 1538
70 191 X 155 180.2 60 19.7 ‘ 130 - 1526
70 P 19.1 i 150 i 1799 - 60 197 = 125 i 1524
70 191 . 145 . 180.2 60 19.7 120 . 1536
70 P 191 . 140 . 181 e

70 T 191 ‘130 ! 1855

i ; . ! ; :

] | |

i

CYCLE #3, PROJECT #1

e
KDSI (est) | TDEV (est)] MM (est) | MM (act

CYCLE #3, PROJECT#2
?l')_SI(estﬂﬁLest MM (est) | MM (act) |

i -

40 19.1 109 | 108.6 50 17.7 1287 | 1291
40 ' 194 | 100 i 101.7 50 ; 177 120 | 12889
40 . 191 90 . 100 50 - 177 110 = 126
40 . 1914 ¢ 85 9956 50 177 105 = 1251
40 | 191 80 99.8 50 17.7 - 100 T 1249
40 191 75 101.1 50 177 95 126.1
40 | 191 70 103.3 50 177 . 90 128.2

CYCLE #3, PROJECT #5

CYCLE #4, PROJECT #4

KDSI (est) [TOEV (est)| MM (est] | MM (act KDSI (est) [ TOEV (est)| MM (est) | MM (act
_ﬁ‘—)‘ 21 3 1 2339 70 L__‘_)"‘_"L'L"ﬂé_lﬂzos 205.8
80 2 220 | 2192 70 1 208 | 190 1892
80 21200 . 2121 70 . 208 | 170, 1825
80 21 180 208.2 70 . 208 165 | 1814
80 21 178 208.1 70 208 | 160 | 180.3
80 ' 21 175 | 2082 70 7 208 | 156 | 1802 |
80 | 20 170 | 2093 70 208 | 150 1806
80 21 7 160 |, 2138 70 208 | 145 1815

T , 70 208 | 130 184.9
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CYCLE #4, PROJECT #1

CYCLE #4, PROJECT #5

[KDS! (est) | TOEV (est), MM (est) MM (act

KDSI (est) TDEV (est), MM (est) MM (act

L A7, . 105. 1. . 219, ; 87
40 T 1716 100 101.2 80 212 200 212
40 176 90 100.2 80 212 - 190 209.4
40 476 85 992 80 212 185 208.7
40 ;. 17.6 83 ] 80 212 . 180 T 208
40 T 1786 80 99.2 80 212 175 208.5
40 . 176 = 15 100.1 80 212 170 209
40 T 176 70 1771021 80 212 180 2131

i

o

|

CYCLE #4, PROJECT #2

CYCLE #4, PROJECT #3

[KDSI (est) 'TDEV (est)| MM (est) | MM (act KDS! (est) [TOEV (est). MM [est) MM (act} |
50 201 | 138.7 138.2 60 | 189 = 1548 156.5
50 201 . 130 | 1304 60 189 140 1539
50 201 | 120 T 1279 60 189 135 1531
50 201 . 115 | 1266 60 189 130 T 1521
50 201 110 | 1259 60 189 128 1521
50 201 . 105 | 126 60 189 125 152.1
50 201 . 100 1267 60 r 189 - 120 153.2

; T T |

CYCLE #5, PROJECT #5

CYCLE #5, PROJECT #4

[KDSI{est) TOEV (es)] MM (esf) | MM (act KDSI (est) TDEV (est)| MM (est) | MM (act
| 80 21 25713 | 2544 7 19.6 186.7 | 186.7
| 80 2y . 240 | 2391 70 19.6 165 1814
| 80 2 20 2192 70 19.6 155 | 1801
80 2 200 @ 212.1 70 196 | 150 | 1797
g 2t i 190 . 209. 70 196 | 145 1803
| 80 00 180 | 2082 70 19.6 140 181.5
80 C 21 715 2082 70 196 130  186.2
80 21 175 2082 i
80 21 160 ' 2138 1

:

T
i

8

CYCLE #5, PROJECT #2

CYCLE #5, PROJECT #3

[KDS! (est) TOEV (est) MM (est) | MM (act
m"?J"_?. K

KDS1 (est) TDEV (est]| MM (est) MM (act)
60 1 ,m'("')"‘_é.s 1829

50 17.8 1 13 4.6 .

50 178 ! 120 | 1288 60 201 . 160 1595

50 178 . 110 : 1259 60 20.1 . 140 . _153.6

50 178 . 105 = 1254 60 20.1 - 135 ;. 1528

50 178 @ 100 . 1252 60 20.1 130 | 1526

50 178 °~ 95 ' 1263 60 20.1 125 1528
60 20.1 120 : 1538

50 178 . 90 1284




CYCLE #5, PROJECT #1

] (st est). MM (est) MM (act

T 16. ™ %'9—1 : a")ﬂ
a0  16.3 90 100.3
40 | 16.3 80 987
40 16.3 775 98.9
40 16.3 75 Y
40 16.3 725 99.5
40 16.3 70 100.5
40 16.3 65 1033
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